Question
Question: Let, f, g and h are differentiable functions, If\(f(0)=1\);\(g(0)=2\);\(h(0)=3\) and the derivatives...
Let, f, g and h are differentiable functions, Iff(0)=1;g(0)=2;h(0)=3 and the derivatives of their pair wise products at x=0 are (fg)′(0)=6;(gh)′(0)=4;(hf)′(0)=5then compute the value of (fgh)′(0).
Solution
Hint: Use the formula given below to solve the problem.
(fgh)′(x)=f(x)g(x)h′(x)+f(x)g′(x)h(x)+f′(x)g(x)h(x)
First we will write the given values,
f(0)=1 (fg)′(0)=6
g(0)=2 (gh)′(0)=4
h(0)=3 (hf)′(0)=5
To proceed further we should know the formula given below,
Formula:
If f and g are two different functions then,
(fg)′(x)=f(x)g′(x)+f′(x)g(x) ( Formulated by simply using chain rule.)
By using above formula we can write,
Complete step-by-step solution -
(1). (fg)′(0)=f(0)g′(0)+f′(0)g(0)
Substitute the given values in above equation,
∴6=1×g′(0)+f′(0)×2
∴g′(0)+2f′(0)=6…………………………………………….. (1)
(2). (gh)′(0)=g(0)h′(0)+g′(0)h(0)
Substitute the given values in above equation,
∴4=2×h′(0)+g′(0)×3
∴2h′(0)+3g′(0)=4…………………………………………… (2)
(3). (hf)′(0)=h(0)f′(0)+h′(0)f(0)
Substitute the given values in above equation,
∴5=3×f′(0)+h′(0)×1
∴3f′(0)+h′(0)=5
∴h′(0)=5−3f′(0)…………………………………………… (3)
Put the value of equation (3) in equation (2),
∴2h′(0)+3g′(0)=4
∴2[5−3f′(0)]+3g′(0)=4
∴10−6f′(0)+3g′(0)=4
∴3[−2f′(0)+g′(0)]=4−10
∴[−2f′(0)+g′(0)]=3−6
∴g′(0)−2f′(0)=−2…………………………………………………… (4)
Now adding (1) and (2) we get,