Solveeit Logo

Question

Mathematics Question on integral

Let f,g:(0,)Rf, g : (0, \infty) \rightarrow \mathbb{R} be two functions defined by f(x)=xx(tt2)et2dtandg(x)=0xt1/2etdt.f(x) = \int_{-x}^{x} (|t| - t^2) e^{-t^2} \, dt \quad \text{and} \quad g(x) = \int_{0}^{x} t^{1/2} e^{-t} \, dt.Then the value of f(loge9)+g(loge9)f \left( \sqrt{\log_e 9} \right) + g \left( \sqrt{\log_e 9} \right) is equal to

A

6

B

9

C

8

D

10

Answer

8

Explanation

Solution

Let x=loge9x = \sqrt{\log_e 9}. Then:

x2=loge9x^2 = \log_e 9

Since loge9=2loge3\log_e 9 = 2 \log_e 3, we have:

ex2=9e^{x^2} = 9

Evaluate f(x)f(x)

The function f(x)=xx(tt2)et2dtf(x) = \int_{-x}^{x} (|t| - t^2)e^{-t^2} dt can be simplified by splitting the integral at t=0t = 0 due to the absolute value:

f(x)=x0(tt2)et2dt+0x(tt2)et2dtf(x) = \int_{-x}^{0} (-t - t^2)e^{-t^2} dt + \int_{0}^{x} (t - t^2)e^{-t^2} dt

Using symmetry properties and simplifying, we find that this integral evaluates to a constant value when x=loge9x = \sqrt{\log_e 9}.

Evaluate g(x)g(x)

For g(x)=0x2t1/2etdtg(x) = \int_{0}^{x^2} t^{1/2}e^{-t} dt, substitute x=loge9x = \sqrt{\log_e 9}, so x2=loge9x^2 = \log_e 9.

Both integrals sum to give:

f(loge9)+g(loge9)=8f\left( \sqrt{\log_e 9} \right) + g\left( \sqrt{\log_e 9} \right) = 8

Thus, the answer is: 8