Solveeit Logo

Question

Question: Let \(f:D \to \mathbb{R}\), where \(D\) is the domain of \(f\) . Find the inverse of \(f\), if it ex...

Let f:DRf:D \to \mathbb{R}, where DD is the domain of ff . Find the inverse of ff, if it exists
A) f(x)=12xf\left( x \right) = 1 - {2^{ - x}}
B) f(x)=(4(x7)3)15f\left( x \right) = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}}
C) f(x)=ln(x+1+x2)f\left( x \right) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)

Explanation

Solution

The inverse of the function f1{f^{ - 1}} exists only if the function f(x)f\left( x \right) is one-one and onto.
One-one function: When each element of set B is mapped to only one element of set A, i.e., each object in set A has a unique image in set B, then the function is called one-one function.
onto functions. If for functions f:ABf:{\text{A}} \to {\text{B}} the co-domain set of B is also the range for the function, then the function is called an onto function.

Complete step-by-step answer:
Step 1: Solve (1)
f(x)=12xf\left( x \right) = 1 - {2^{ - x}}
On differentiating both sides.
f(x)=+2xln2>0f'\left( x \right) = + {2^{ - x}}\ln 2 > 0
f(x)\Rightarrow f\left( x \right) is an increasing function.
Domain =R = \mathbb{R} , where is a set of real numbers.
f(x)\Rightarrow f\left( x \right) is a one-one function.
limxf(x)=limx12x=\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } 1 - {2^{ - x}} = - \infty (2=)\left( {\because {2^\infty } = \infty } \right)
limxf(x)=limx12x=1\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } 1 - {2^{ - x}} = 1 (2=0)\left( {\because {2^{ - \infty }} = 0} \right)
\therefore Range =(,1) = \left( { - \infty ,1} \right)
But the codomain is R\mathbb{R} . Therefore function (1) is not onto. Hence, f(x)f\left( x \right) is not invertible. Thus f1{f^{ - 1}} i.e. inverse function does not exist.
Step 1: Solve (2)
f(x)=(4(x7)3)15f\left( x \right) = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}}
On differentiating both sides.
f(x)=15(4(x7)3)151×(3)(x7)2 3(x7)215(4(x7)3)45  f'\left( x \right) = \dfrac{1}{5}{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5} - 1}} \times \left( { - 3} \right){\left( {x - 7} \right)^2} \\\ \Rightarrow \dfrac{{ - 3{{\left( {x - 7} \right)}^2}}}{{\dfrac{1}{5}{{\left( {4 - {{\left( {x - 7} \right)}^3}} \right)}^{\dfrac{4}{5}}}}} \\\
For f(x)f'\left( x \right) to be defined, the denominator should not be zero.
4(x7)30 (x7)34 x7413 x7+413  4 - {\left( {x - 7} \right)^3} \ne 0 \\\ \Rightarrow {\left( {x - 7} \right)^3} \ne 4 \\\ \Rightarrow x - 7 \ne {4^{\dfrac{1}{3}}} \\\ \Rightarrow x \ne 7 + {4^{\dfrac{1}{3}}} \\\
Domain, D = \mathbb{R} - \left\\{ {7 + {4^{\dfrac{1}{3}}}} \right\\} , where is a set of real numbers.
For xD, f(x)>0x \in D,{\text{ }}f'\left( x \right) > 0
f(x)\Rightarrow f\left( x \right) is a one-one function.
The range =Rf(x) = \mathbb{R} \Rightarrow f\left( x \right) is an onto function.
Thus f(x)f\left( x \right) is an invertible function.
Let f(x)=yf\left( x \right) = y

y=(4(x7)3)15 y5=4(x7)3 (x7)3=4y5 x7=(4y5)13 x=7+(4y5)13  y = {\left( {4 - {{\left( {x - 7} \right)}^3}} \right)^{\dfrac{1}{5}}} \\\ \Rightarrow {y^5} = 4 - {\left( {x - 7} \right)^3} \\\ \Rightarrow {\left( {x - 7} \right)^3} = 4 - {y^5} \\\ \Rightarrow x - 7 = {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\\ \Rightarrow x = 7 + {\left( {4 - {y^5}} \right)^{\dfrac{1}{3}}} \\\

Interchange xyx \leftrightarrow y
y=7+(4x5)13\Rightarrow y = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}
The inverse of the function, f1(x)=7+(4x5)13{f^{ - 1}}\left( x \right) = 7 + {\left( {4 - {x^5}} \right)^{\dfrac{1}{3}}}
Step 3: Solve (3)
f(x)=ln(x+1+x2)f\left( x \right) = \ln \left( {x + \sqrt {1 + {x^2}} } \right)
For domain: x+1+x2>0, xRx + \sqrt {1 + {x^2}} > 0,{\text{ }}\forall x \in \mathbb{R}
Therefore, Domain =R = \mathbb{R} , where is a set of real numbers.
Differentiating the given function on both sides.

f(x)=1+2x21+x2x+1+x2 x+1+x21+x2x+1+x2 11+x2  f'\left( x \right) = \dfrac{{1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\\ \Rightarrow \dfrac{{\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}}}{{x + \sqrt {1 + {x^2}} }} \\\ \Rightarrow \dfrac{1}{{\sqrt {1 + {x^2}} }} \\\

f(x)>0f'\left( x \right) > 0
Therefore, the function is one-one.
Range =limxf(x)=limxln(x+1+x2) = \mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)
Let L=limxln(x+1+x2)L = \mathop {\lim }\limits_{x \to - \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right)
Put x=hx = - h
L=limhln(h+1+(h)2) limhln(h+1+(h)2×1+(h)2+h1+(h)2+h) limhln(11+(h)2+h) limhln(1+(h)2+h)   L = \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( { - h} \right)}^2}} } \right) \\\ \Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( { - h + \sqrt {1 + {{\left( h \right)}^2}} \times \dfrac{{\sqrt {1 + {{\left( h \right)}^2}} + h}}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\\ \Rightarrow \mathop {\lim }\limits_{h \to \infty } \ln \left( {\dfrac{1}{{\sqrt {1 + {{\left( h \right)}^2}} + h}}} \right) \\\ \Rightarrow \mathop {\lim }\limits_{h \to \infty } - \ln \left( {\sqrt {1 + {{\left( h \right)}^2}} + h} \right) \\\ \Rightarrow - \infty \\\
limxf(x)=limxln(x+1+x2)=\mathop {\lim }\limits_{x \to \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \ln \left( {x + \sqrt {1 + {x^2}} } \right) = \infty
Therefore, Range =R = \mathbb{R}
Hence, the function is onto.
Thus, the function is invertible.
Let f(x)=yf\left( x \right) = y
y=ln(x+1+x2) ey=(x+1+x2) eyx=1+x2  y = \ln \left( {x + \sqrt {1 + {x^2}} } \right) \\\ \Rightarrow {e^y} = \left( {x + \sqrt {1 + {x^2}} } \right) \\\ \Rightarrow {e^y} - x = \sqrt {1 + {x^2}} \\\
Squaring both sides and expanding using the identity (a+b)2=a2+b2+2ab{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab
(eyx)2=(1+x2)2 e2y+x22xey=1+x2 e2y2xey=1 e2y1=2xey x=e2y12ey  \Rightarrow {\left( {{e^y} - x} \right)^2} = {\left( {\sqrt {1 + {x^2}} } \right)^2} \\\ \Rightarrow {e^{2y}} + {x^2} - 2x{e^y} = 1 + {x^2} \\\ \Rightarrow {e^{2y}} - 2x{e^y} = 1 \\\ \Rightarrow {e^{2y}} - 1 = 2x{e^y} \\\ \Rightarrow x = \dfrac{{{e^{2y}} - 1}}{{2{e^y}}} \\\
Interchange xyx \leftrightarrow y
y=e2x12ex\Rightarrow y = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}

The inverse of the function, f1(x)=e2x12ex{f^{ - 1}}\left( x \right) = \dfrac{{{e^{2x}} - 1}}{{2{e^x}}}

Note: The composition of functions is also useful in checking the invertible function, hence finding the inverse of the function.
A function f:XYf:X \to Y is defined to be invertible, if there exists a function g:YXg:Y \to X such that gof=Ixgof = {I_x}and fog=Iyfog = {I_y} . The function gg is called the inverse of ff and is denoted by f1{f^{ - 1}} .