Solveeit Logo

Question

Mathematics Question on Functions

Let f:f : \bullet \to \bullet satisfy f(x)f(y)=f(xy)f (x) f ( y) = f (xy) for all real numbers xx and yy. If f(2)=4f (2)= 4, then f(12)=f \left( \frac{1}{2} \right) =

A

0

B

14\frac{1}{4}

C

12\frac{1}{2}

D

1

Answer

14\frac{1}{4}

Explanation

Solution

Given, f:f: \bullet \rightarrow \bullet f(x)f(y)=f(xy)f(x) f(y)=f(x y) ...(i) On taking x=1,y=1x=1,\, y=1 f()1f(1)=f(11)=f(1)2=f(1)=f(1)=1f()1 f( 1 )=f( 1 \cdot 1 )=f( 1 )^{2}=f( 1 )=f( 1 )= 1 Now, x=2,y=12x=2,\, y=\frac{1}{2}, then from E (i) f(2)f(12)=f(212)f(2) f\left(\frac{1}{2}\right)=f\left(2 \cdot \frac{1}{2}\right) 4f(12)=f(1)[f(2)=4]\Rightarrow 4 \cdot f\left(\frac{1}{2}\right)=f(1) [\because f(2)=4] f(12)=14f(1)\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4} f(1) On putting the value of f(1)f(1), f(12)=141=14\Rightarrow f\left(\frac{1}{2}\right)=\frac{1}{4} \cdot 1 =\frac{ 1 }{4}