Solveeit Logo

Question

Question: Let f be the twice differentiable function such that \(f''\left( x \right)=-f\left( x \right)\text{ ...

Let f be the twice differentiable function such that f(x)=f(x) and f(x)=g(x).f''\left( x \right)=-f\left( x \right)\text{ and }f'\left( x \right)=g\left( x \right).If h(x)=[f(x)2+g(x)2],h(1)=8,h(0)=2h'\left( x \right)=\left[ f{{\left( x \right)}^{2}}+g{{\left( x \right)}^{2}} \right],h\left( 1 \right)=8,h\left( 0 \right)=2, then h(2) equals to
A. 1
B. 2
C. 3
D. None of these

Explanation

Solution

Hint: Differentiate the function h(x)=f(x)2+g(x)2h'\left( x \right)=f{{\left( x \right)}^{2}}+g{{\left( x \right)}^{2}}. Then substitute the values and given conditions to the differentiate function.

Complete step-by-step answer:
Given that h(x)=f(x)2+g(x)2..............(1)h'\left( x \right)=f{{\left( x \right)}^{2}}+g{{\left( x \right)}^{2}}..............\left( 1 \right)
Differentiate equation (1) with respect to x.
We get;
h.(x)=2f(x)f(x)+2g(x)g(x)................(2)h''.\left( x \right)=2f\left( x \right)f'\left( x \right)+2g\left( x \right)g'\left( x \right)................\left( 2 \right)
It’s given that f ’(x) = g(x)
h(x)=2f(x)g(x)+2g(x)g(x)\therefore h''\left( x \right)=2f\left( x \right)g\left( x \right)+2g\left( x \right)g'\left( x \right)
Given f ”(x) = -f(x)
f ’(x) = g’(x), take the differentiation
then f ” (x) = g’(x)
Substitute, the values for f ’(x) and f ”(x)
h(x)=2f(x)g(x)+2g(x)f(x) =2f(x)g(x)2g(x)f(x)=0 \begin{aligned} & \therefore h''\left( x \right)=2f\left( x \right)g\left( x \right)+2g\left( x \right)f''\left( x \right) \\\ & =2f\left( x \right)g\left( x \right)-2g\left( x \right)f\left( x \right)=0 \\\ \end{aligned}
Thus h’(x) = k, a constant for all xRx\in R
Let h(x) = kx + m, forms the equation of line
i.e. h(0) = 2, from question
\Rightarrow We get a possible equation as 2=kx+m2=kx+m
2=k×0+mm=2, where x=02=k\times 0+m\Rightarrow m=2,\text{ where }x=0
Then, h(1) = 8
\Rightarrow 8 = k x 1 + m
8 = k x 1 +2
\Rightarrow k = 8 – 2 = 6
Hence, we got the values of m and k
m = 2, k = 6
h(2) , where x = 2
Substitute these to get value of h(2);
\therefore h(2) = 6 x 2 + 2 = 14
Hence, value of h(2) = 14.

Note: f ’(x) = g(x), is differentiated again to form f ”(x) = g’(x). As we got h”(x) = 0, h’(x) = k is constant for all xRx\in R.