Question
Question: Let f be the twice differentiable function such that \(f''\left( x \right)=-f\left( x \right)\text{ ...
Let f be the twice differentiable function such that f′′(x)=−f(x) and f′(x)=g(x).If h′(x)=[f(x)2+g(x)2],h(1)=8,h(0)=2, then h(2) equals to
A. 1
B. 2
C. 3
D. None of these
Solution
Hint: Differentiate the function h′(x)=f(x)2+g(x)2. Then substitute the values and given conditions to the differentiate function.
Complete step-by-step answer:
Given that h′(x)=f(x)2+g(x)2..............(1)
Differentiate equation (1) with respect to x.
We get;
h′′.(x)=2f(x)f′(x)+2g(x)g′(x)................(2)
It’s given that f ’(x) = g(x)
∴h′′(x)=2f(x)g(x)+2g(x)g′(x)
Given f ”(x) = -f(x)
f ’(x) = g’(x), take the differentiation
then f ” (x) = g’(x)
Substitute, the values for f ’(x) and f ”(x)
∴h′′(x)=2f(x)g(x)+2g(x)f′′(x)=2f(x)g(x)−2g(x)f(x)=0
Thus h’(x) = k, a constant for all x∈R
Let h(x) = kx + m, forms the equation of line
i.e. h(0) = 2, from question
⇒ We get a possible equation as 2=kx+m
2=k×0+m⇒m=2, where x=0
Then, h(1) = 8
⇒8 = k x 1 + m
8 = k x 1 +2
⇒k = 8 – 2 = 6
Hence, we got the values of m and k
m = 2, k = 6
h(2) , where x = 2
Substitute these to get value of h(2);
∴ h(2) = 6 x 2 + 2 = 14
Hence, value of h(2) = 14.
Note: f ’(x) = g(x), is differentiated again to form f ”(x) = g’(x). As we got h”(x) = 0, h’(x) = k is constant for all x∈R.