Question
Mathematics Question on Integrals of Some Particular Functions
Let f be the function [−π,π] given by f(0)=9andf(x)=f(x)=sin(29x)/sin(2x) for x=0 . The value of π2∫−ππ f(x)dx is
0
4
8
None of these
4
Solution
Given, f(0)=9 and f(x)=sin2xsin(29x)
Now, f(−x)=sin(−2x)sin(−29x)=−sin(2x)−sin(29x)=f(x)
Hence, f(x) is an even function
∴I=π2∫−ππf(x)dx
=π2×2∫0πf(x)dx
=π4∫0πsin2xsin29xdx
=π4∫0πsin2xsin(4x+2x)dx
=π4∫0πsin2xsin4xcos2x+sin2xcos4xdx
=π4[∫0π(sin4xcot2xdx)]+0
[∵∫0πcos4xdx=[4sin4x]0π =41(sin4π−sin)=41[0−0]=0]=−41[0−0]=0
∴I=π4∫0πsin4xcot2xdx…(i)
=π4∫0πsin(4π−4x)cot(2π−x)dx
⇒I=π4∫0π−sin4xtan2xdx…(ii)
On adding Eqs. (i) and (ii), we get
2I=π4[∫0πsin4x(cot2x−tan2x)dx]
=π4[∫0πsin4xsin2xcos2x(cos22x−sin22x)dx]
=π4[∫0π21sinxsin4xcosxdx]
=π8[∫0πsinx2sin2xcos2xcosxdx]
=π16[∫0πsinx2sinxcosxcos2xcosxdx]
=π32∫0πcos2xcos2xdx
=π32∫0π(2cos2x+1)cos2xdx
=π16[∫0πcos22xdx+∫0πcos2xdx]
=π16[∫0π2cos4x+1dx+∫0πcos2xdx]
=π16[21[4sin4x+x]0x+[2sin2x]0x]
=π16[21[0+π−0−0]+[20−0]]=π16[2π]
2I⇒8
⇒I=4