Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let ff be the function [π,π][-\pi, \pi] given by f(0)=9andf(x)=f(x)=sin(9x2)/sin(x2)f(0) = 9 \,and\,f(x) \,=\, f(x) = sin (\frac {9x}{2})/sin(\frac {x}{2}) for x0x \neq 0 . The value of 2πππ\frac{2}{\pi} \int^{\pi}_{-\pi} f(x)dxf(x) dx is

A

0

B

4

C

8

D

None of these

Answer

4

Explanation

Solution

Given, f(0)=9f \left(0\right)=9 and f(x)=sin(9x2)sinx2f \left(x\right)=\frac{sin\left(\frac{9x}{2}\right)}{sin\frac{x}{2}}
Now, f(x)=sin(9x2)sin(x2)=sin(9x2)sin(x2)=f(x)f \left(-x\right)=\frac{sin\left(-\frac{9x}{2}\right)}{sin \left(-\frac{x}{2}\right)} =\frac{-sin \left(\frac{9x}{2}\right)}{-sin \left(\frac{x}{2}\right)}=f \left(x\right)
Hence, f(x)f\left(x\right) is an even function
I=2πππf(x)dx\therefore I=\frac{2}{\pi} \int_{-\pi}^{\pi}f \left(x\right)dx
=2π×20πf(x)dx=\frac{2}{\pi}\times2 \int^{\pi}_{0} f \left(x\right)dx
=4π0πsin9x2sinx2dx=\frac{4}{\pi} \int_{0}^{\pi} \frac{sin \frac{9x}{2}}{sin \frac{x}{2}}dx
=4π0πsin(4x+x2)sinx2dx=\frac{4}{\pi} \int_{0}^{\pi} \frac{sin\left(4x+\frac{x}{2}\right)}{sin \frac{x}{2}} dx
=4π0πsin4xcosx2+sinx2cos4xsinx2dx=\frac{4}{\pi} \int_{0}^{\pi} \frac{sin\,4x\,cos \frac{x}{2}+sin \frac{x}{2} cos \,4x}{sin \frac{x}{2}}dx
=4π[0π(sin4xcotx2dx)]+0=\frac{4}{\pi} \left[\int_{0}^{\pi}\left(sin\,4x\,cot \frac{x}{2} dx\right)\right]+0
[0πcos4xdx=[sin4x4]0π =14(sin4πsin)=14[00]=0]=14[00]=0\left[\begin{matrix}\because \int_{0}^{\pi}cos\,4x\,dx=\left[\frac{sin\,4x}{4}\right]_{0}^{\pi}\\\ =\frac{1}{4}\left(sin\,4\pi-sin\right)=\frac{1}{4}\left[0-0\right]=0\end{matrix}\right]=-\frac{1}{4}\left[0-0\right]=0
I=4π0πsin4xcotx2dx(i)\therefore I=\frac{4}{\pi}\int_{0}^{\pi} sin\,4x\,cot \frac{x}{2} dx \ldots\left(i\right)
=4π0πsin(4π4x)cot(πx2)dx=\frac{4}{\pi} \int_{0}^{\pi} sin \left(4\pi-4x\right)cot \left(\frac{\pi-x}{2}\right)dx
I=4π0πsin4xtanx2dx(ii)\Rightarrow I=\frac{4}{\pi} \int_{0}^{\pi} -sin \,4x \, tan \frac{x}{2} dx \ldots\left(ii\right)
On adding Eqs. (i)\left(i\right) and (ii)\left(ii\right), we get
2I=4π[0πsin4x(cotx2tanx2)dx]2I=\frac{4}{\pi} \left[\int_{0}^{\pi} sin\,4x\left(cot \frac{x}{2}-tan\frac{x}{2}\right)dx\right]
=4π[0πsin4x(cos2x2sin2x2)sinx2cosx2dx]=\frac{4}{\pi}\left[\int_{0}^{\pi}sin\,4x \frac{\left(cos^{2}\frac{x}{2}-sin^{2}\frac{x}{2}\right)}{sin \frac{x}{2}cos \frac{x}{2}} dx\right]
=4π[0πsin4xcosx12sinxdx]=\frac{4}{\pi}\left[\int_{0}^{\pi}\frac{sin\,4x\,cos\,x}{\frac{1}{2}sin\,x}dx\right]
=8π[0π2sin2xcos2xcosxsinxdx]=\frac{8}{\pi} \left[\int_{0}^{\pi} \frac{2\,sin\,2x\,cos\,2x\,cos\,x}{sin\,x}dx\right]
=16π[0π2sinxcosxcos2xcosxsinxdx]=\frac{16}{\pi}\left[\int_{0}^{\pi}\frac{2\,sin\,x\,cos\,x\,cos\,2x\,cos\,x}{sin\,x}dx\right]
=32π0πcos2xcos2xdx=\frac{32}{\pi} \int_{0}^{\pi}cos^{2}\,x\, cos\,2x\,dx
=32π0π(cos2x+12)cos2xdx=\frac{32}{\pi}\int_{0}^{\pi} \left(\frac{cos\,2x+1}{2}\right)cos\,2x\,dx
=16π[0πcos22xdx+0πcos2xdx]=\frac{16}{\pi}\left[\int_{0}^{\pi}cos^{2}\,2x\,dx+\int_{0}^{\pi}cos\,2x\,dx\right]
=16π[0πcos4x+12dx+0πcos2xdx]=\frac{16}{\pi} \left[\int_{0}^{\pi} \frac{cos\,4x+1}{2}dx+\int_{0}^{\pi} cos\,2x\,dx\right]
=16π[12[sin4x4+x]0x+[sin2x2]0x]=\frac{16}{\pi}\left[\frac{1}{2}\left[\frac{sin\,4x}{4}+x\right]_{0}^{x}+\left[\frac{sin\,2x}{2}\right]_{0}^{x}\right]
=16π[12[0+π00]+[002]]=16π[π2]=\frac{16}{\pi}\left[\frac{1}{2}\left[0+\pi-0-0\right]+\left[\frac{0-0}{2}\right]\right]=\frac{16}{\pi}\left[\frac{\pi}{2}\right]
2I82I \Rightarrow 8
I=4\Rightarrow I=4