Solveeit Logo

Question

Question: Let f be integrable over [0, a] for any real a. If we define I<sub>1</sub> = \(\int_{0}^{\pi/2}{\cos...

Let f be integrable over [0, a] for any real a. If we define I1 = 0π/2cosθ\int_{0}^{\pi/2}{\cos\theta}f(sin q + cos2q) dq and

I2 =0π/2sin2θ\int_{0}^{\pi/2}{\sin 2\theta}f(sin q + cos2q)dq, then

A

I1 = I2

B

I1 = –I2

C

I1 = 2I2

D

I1 = –2I2

Answer

I1 = I2

Explanation

Solution

I1 = 0π2cosθ\int_{0}^{\frac{\pi}{2}}{\cos\theta}f(sinq + cos2q) dq

I2 = 0π22sinθcosθ\int_{0}^{\frac{\pi}{2}}{2\sin\theta\cos\theta}f(sinq + cos2q) dq

Let sinq = t, then I1 = 01f(t+1t2)\int_{0}^{1}{f(t + 1–t^{2})}dt.

and I2 = 201tf(t+1t2)dt\int_{0}^{1}{tf(t + 1–t^{2})dt}

replace t by 1 – t then I1 = I2