Question
Question: Let f be integrable over [0, a] for any real a. If we define I<sub>1</sub> = \(\int_{0}^{\pi/2}{\cos...
Let f be integrable over [0, a] for any real a. If we define I1 = ∫0π/2cosθf(sin q + cos2q) dq and
I2 =∫0π/2sin2θf(sin q + cos2q)dq, then
A
I1 = I2
B
I1 = –I2
C
I1 = 2I2
D
I1 = –2I2
Answer
I1 = I2
Explanation
Solution
I1 = ∫02πcosθf(sinq + cos2q) dq
I2 = ∫02π2sinθcosθf(sinq + cos2q) dq
Let sinq = t, then I1 = ∫01f(t+1–t2)dt.
and I2 = 2∫01tf(t+1–t2)dt
replace t by 1 – t then I1 = I2