Solveeit Logo

Question

Question: Let \[f\] be an odd function defined on the set of real numbers such that for \[x \geqslant 0\], \[f...

Let ff be an odd function defined on the set of real numbers such that for x0x \geqslant 0, f(x)=3sinx+4cosxf(x) = 3\sin x + 4\cos x. Then f(x)f(x) at x=11π6x = \dfrac{{ - 11\pi }}{6} is equal to
A. 3223\dfrac{{ - 3}}{2} - 2\sqrt 3
B. 3223\dfrac{3}{2} - 2\sqrt 3
C. 32+23\dfrac{3}{2} + 2\sqrt 3
D. 32+23\dfrac{{ - 3}}{2} + 2\sqrt 3

Explanation

Solution

Here we use the concept of odd functions which is f(x)=f(x)f( - x) = - f(x) and solve for the value at given x. We break the angle in such a way that it is added or subtracted from 2π2\pi .

Complete step-by-step answer:
We have f(x)=3sinx+4cosxf(x) = 3\sin x + 4\cos x
Also, we know any function is an odd function if it satisfies f(x)=f(x)f( - x) = - f(x).
Now we have to find the value of the function at point x=11π6x = \dfrac{{ - 11\pi }}{6}
We have to find the value of f(11π6)f(\dfrac{{ - 11\pi }}{6})
Since, f is an odd function, therefore, we can use the concept f(x)=f(x)f( - x) = - f(x). Substitute x=11π6x = \dfrac{{ - 11\pi }}{6}.
f(11π6)=f(11π6)\Rightarrow f(\dfrac{{ - 11\pi }}{6}) = - f(\dfrac{{11\pi }}{6})
Now we can break the angle inside the function as
11π6=12ππ6\Rightarrow \dfrac{{11\pi }}{6} = \dfrac{{12\pi - \pi }}{6}
Separating the fraction into two parts
11π6=12π6π6\Rightarrow \dfrac{{11\pi }}{6} = \dfrac{{12\pi }}{6} - \dfrac{\pi }{6}
Cancel out common factors from numerator and denominator
11π6=2ππ6\Rightarrow \dfrac{{11\pi }}{6} = 2\pi - \dfrac{\pi }{6}
Therefore, we can write
f(11π6)=f(2ππ6)f(\dfrac{{ - 11\pi }}{6}) = - f(2\pi - \dfrac{\pi }{6})
Now we know f(x)=3sinx+4cosxf(x) = 3\sin x + 4\cos x
Put x=2ππ6x = 2\pi - \dfrac{\pi }{6}
f(11π6)=3sin(2ππ6)+4cos(2ππ6)\Rightarrow f(\dfrac{{11\pi }}{6}) = 3\sin \left( {2\pi - \dfrac{\pi }{6}} \right) + 4\cos \left( {2\pi - \dfrac{\pi }{6}} \right) … (1)
Now we will use the quadrant graph to convert the angles.

Here we denote 2π=360,π=1802\pi = {360^ \circ },\pi = {180^ \circ }
Now we calculate the values of both the functions on RHS of the equation using the quadrant diagram.
For sin(2ππ6)\sin \left( {2\pi - \dfrac{\pi }{6}} \right), we are subtracting from 2π2\pi which goes into the fourth quadrant where sin function is negative.
So, the value of sin(2ππ6)=sin(π6)=12\sin \left( {2\pi - \dfrac{\pi }{6}} \right) = - \sin (\dfrac{\pi }{6}) = - \dfrac{1}{2} … (2)
For cos(2ππ6)\cos \left( {2\pi - \dfrac{\pi }{6}} \right), we are subtracting from 2π2\pi which goes into the fourth quadrant where the cos function is positive.
So, the value of cos(2ππ6)=cos(π6)=32\cos \left( {2\pi - \dfrac{\pi }{6}} \right) = \cos (\dfrac{\pi }{6}) = \dfrac{{\sqrt 3 }}{2} … (3)
Substitute the values from equation (2) and equation (3) in equation (1)
f(x)=3(12)+4(32)\Rightarrow f(x) = 3(\dfrac{{ - 1}}{2}) + 4(\dfrac{{\sqrt 3 }}{2})
Multiply the terms in the bracket.

f(11π6)=32+432 f(11π6)=32+23  \Rightarrow f(\dfrac{{11\pi }}{6}) = \dfrac{{ - 3}}{2} + \dfrac{{4\sqrt 3 }}{2} \\\ \Rightarrow f(\dfrac{{11\pi }}{6}) = \dfrac{{ - 3}}{2} + 2\sqrt 3 \\\

So now f(11π6)=f(11π6)f( - \dfrac{{11\pi }}{6}) = - f(\dfrac{{11\pi }}{6})
Therefore,

f(11π6)=[32+23] f(11π6)=3223  \Rightarrow f( - \dfrac{{11\pi }}{6}) = - [\dfrac{{ - 3}}{2} + 2\sqrt 3 ] \\\ \Rightarrow f( - \dfrac{{11\pi }}{6}) = \dfrac{3}{2} - 2\sqrt 3 \\\

So, option B is correct.

Note: Students are likely to make mistakes while calculating the values from the quadrant diagram, keep in mind that we always move anti-clockwise as we add the angles, so when we subtract the angle we move backwards or clockwise to see which quadrant our function lies in.