Solveeit Logo

Question

Engineering Mathematics Question on Total derivative

Let f(.) be a twice differentiable function from R2R\R^2\rightarrow\R. If p, x0 ∈ R2\R^2 where ||p|| is sufficiently small (here ||. || is the Euclidean norm or distance function), then f(x0+p)=f(x0)+f(x0)Tp+12pT2f(ψ)pf(x_0 + p) =f(x_0) + \triangledown f(x_0)^Tp+\frac{1}{2}p^T\triangledown^2f(\psi)p where ψR2\psi\isin\R^2 is a point on the line segment joining x0 and x0 + p. If x0 is a strict local minimum of f(x), then which one of the following statements is TRUE?

A

f(x0)Tp>0 and pT2f(ψ)p=0\triangledown f(x_0)^Tp \gt0\ \text{and}\ p^T\triangledown^2f(\psi)p=0

B

f(x0)Tp=0 and pT2f(ψ)p>0\triangledown f(x_0)^Tp =0\ \text{and}\ p^T\triangledown^2f(\psi)p\gt0

C

f(x0)Tp=0 and pT2f(ψ)p=0\triangledown f(x_0)^Tp =0\ \text{and}\ p^T\triangledown^2f(\psi)p=0

D

f(x0)Tp>0 and pT2f(ψ)p<0\triangledown f(x_0)^Tp \gt0\ \text{and}\ p^T\triangledown^2f(\psi)p\lt0

Answer

f(x0)Tp=0 and pT2f(ψ)p>0\triangledown f(x_0)^Tp =0\ \text{and}\ p^T\triangledown^2f(\psi)p\gt0

Explanation

Solution

The correct option is (B): f(x0)Tp=0 and pT2f(ψ)p>0\triangledown f(x_0)^Tp =0\ \text{and}\ p^T\triangledown^2f(\psi)p\gt0