Solveeit Logo

Question

Question: Let f be a twice differentiable function defined in [-3, 3] such that f(0) = -4, $f'(3) = 0, f'(-3) ...

Let f be a twice differentiable function defined in [-3, 3] such that f(0) = -4, f(3)=0,f(3)=12f'(3) = 0, f'(-3) = 12 and f(x)2x[3,3]f''(x) \ge -2 \forall x \in [-3, 3]. If g(x)=0xf(t)dtg(x) = \int_{0}^{x} f(t) dt then find maximum value of g(x).

Answer

48

Explanation

Solution

To find the maximum value of g(x)=0xf(t)dtg(x) = \int_{0}^{x} f(t) dt on the interval [3,3][-3, 3], we first need to determine the function f(x)f(x).

Step 1: Determine f(x)f'(x)

We are given f(x)2f''(x) \ge -2 for all x[3,3]x \in [-3, 3]. Let's define a new function H(x)=f(x)+2xH(x) = f'(x) + 2x. Differentiating H(x)H(x) with respect to xx: H(x)=f(x)+2H'(x) = f''(x) + 2. Since f(x)2f''(x) \ge -2, it follows that f(x)+20f''(x) + 2 \ge 0, so H(x)0H'(x) \ge 0. This means H(x)H(x) is a non-decreasing function on the interval [3,3][-3, 3].

Now, let's evaluate H(x)H(x) at the endpoints of the interval using the given conditions: At x=3x = 3: H(3)=f(3)+2(3)=0+6=6H(3) = f'(3) + 2(3) = 0 + 6 = 6. At x=3x = -3: H(3)=f(3)+2(3)=126=6H(-3) = f'(-3) + 2(-3) = 12 - 6 = 6.

Since H(x)H(x) is a non-decreasing function and its values at the endpoints x=3x=-3 and x=3x=3 are both 66, it implies that H(x)H(x) must be constant and equal to 66 for all x[3,3]x \in [-3, 3]. Therefore, f(x)+2x=6f'(x) + 2x = 6, which gives us: f(x)=62xf'(x) = 6 - 2x.

Step 2: Determine f(x)f(x)

Now, integrate f(x)f'(x) to find f(x)f(x): f(x)=(62x)dx=6xx2+Cf(x) = \int (6 - 2x) dx = 6x - x^2 + C. We are given f(0)=4f(0) = -4. Using this condition to find the constant CC: f(0)=6(0)(0)2+C=Cf(0) = 6(0) - (0)^2 + C = C. So, C=4C = -4. Thus, f(x)=6xx24f(x) = 6x - x^2 - 4.

Step 3: Determine g(x)g(x)

Now, substitute f(x)f(x) into the definition of g(x)g(x): g(x)=0xf(t)dt=0x(6tt24)dtg(x) = \int_{0}^{x} f(t) dt = \int_{0}^{x} (6t - t^2 - 4) dt. Integrate the expression: g(x)=[3t2t334t]0xg(x) = \left[ 3t^2 - \frac{t^3}{3} - 4t \right]_{0}^{x} g(x)=(3x2x334x)(3(0)2(0)334(0))g(x) = \left( 3x^2 - \frac{x^3}{3} - 4x \right) - \left( 3(0)^2 - \frac{(0)^3}{3} - 4(0) \right) g(x)=3x2x334xg(x) = 3x^2 - \frac{x^3}{3} - 4x.

Step 4: Find the maximum value of g(x)g(x)

To find the maximum value of g(x)g(x) on [3,3][-3, 3], we need to evaluate g(x)g(x) at its critical points within the interval and at the endpoints of the interval. First, find the critical points by setting g(x)=0g'(x) = 0. We know g(x)=f(x)g'(x) = f(x). So, f(x)=6xx24=0f(x) = 6x - x^2 - 4 = 0. Rearranging the quadratic equation: x26x+4=0x^2 - 6x + 4 = 0. Using the quadratic formula x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}: x=6±(6)24(1)(4)2(1)x = \frac{6 \pm \sqrt{(-6)^2 - 4(1)(4)}}{2(1)} x=6±36162x = \frac{6 \pm \sqrt{36 - 16}}{2} x=6±202x = \frac{6 \pm \sqrt{20}}{2} x=6±252x = \frac{6 \pm 2\sqrt{5}}{2} x=3±5x = 3 \pm \sqrt{5}.

Now, check which of these critical points lie within the interval [3,3][-3, 3]: x1=3+53+2.236=5.236x_1 = 3 + \sqrt{5} \approx 3 + 2.236 = 5.236. This is outside [3,3][-3, 3]. x2=3532.236=0.764x_2 = 3 - \sqrt{5} \approx 3 - 2.236 = 0.764. This is inside [3,3][-3, 3].

To determine if x=35x = 3 - \sqrt{5} is a local maximum or minimum, we use the second derivative test: g(x)=f(x)=62xg''(x) = f'(x) = 6 - 2x. At x=35x = 3 - \sqrt{5}: g(35)=62(35)=66+25=25g''(3 - \sqrt{5}) = 6 - 2(3 - \sqrt{5}) = 6 - 6 + 2\sqrt{5} = 2\sqrt{5}. Since g(35)=25>0g''(3 - \sqrt{5}) = 2\sqrt{5} > 0, the critical point x=35x = 3 - \sqrt{5} corresponds to a local minimum for g(x)g(x).

Therefore, the maximum value of g(x)g(x) must occur at one of the endpoints of the interval [3,3][-3, 3]. Let's evaluate g(x)g(x) at the endpoints x=3x = -3 and x=3x = 3: g(3)=3(3)2(3)334(3)g(3) = 3(3)^2 - \frac{(3)^3}{3} - 4(3) g(3)=3(9)27312g(3) = 3(9) - \frac{27}{3} - 12 g(3)=27912g(3) = 27 - 9 - 12 g(3)=1812=6g(3) = 18 - 12 = 6.

g(3)=3(3)2(3)334(3)g(-3) = 3(-3)^2 - \frac{(-3)^3}{3} - 4(-3) g(3)=3(9)273+12g(-3) = 3(9) - \frac{-27}{3} + 12 g(3)=27(9)+12g(-3) = 27 - (-9) + 12 g(3)=27+9+12g(-3) = 27 + 9 + 12 g(3)=36+12=48g(-3) = 36 + 12 = 48.

Comparing the values: g(0)=0g(0) = 0, g(3)=6g(3) = 6, and g(3)=48g(-3) = 48. The maximum value of g(x)g(x) on the interval [3,3][-3, 3] is 4848.