Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let ff be a twice differentiable function defined on RR such that f(0)=1,f(0)=2f (0)=1, f'(0)=2 and f(x)0f'(x)\neq 0 for all xRx \in R. If f(x)f(x) f(x)f(x)=0,\left|\begin{array}{cc}f(x) & f'(x) \\\ f'(x) & f''(x)\end{array}\right|=0, for all xR,x \in R, then the value of f(1)f (1) lies in the interval:

A

(9,12)

B

(6,9)

C

(0,3)

D

(3,6)

Answer

(6,9)

Explanation

Solution

f(x)f(x)(f(x))2=0f(x) f''(x)-\left(f'(x)\right)^{2}=0 f(x)f(x)=f(x)f(x)\frac{f''(x)}{f'(x)}=\frac{f'(x)}{f(x)} ln (f(x))=lnf(x)+lnc\left(f'(x)\right)=\ln f(x)+\ln c f(x)=cf(x)f'(x)= cf (x) f(x)f(x)=c\frac{f'(x)}{f(x)}=c lnf(x)=cx+k1(x)=c x+k_{1} f(x)=kecxf(x)=k e^{c x} f(0)=1=kf(0)=1=k f(0)=c=2f'(0)=c=2 f(x)=e2xf(x)=e^{2 x} f(1)=e2(6,9)f(1)=e^{2} \in(6,9)