Question
Mathematics Question on limits and derivatives
Let f be a twice differentiable function defined on R such that f(0)=1,f′(0)=2 and f′(x)=0 for all x∈R. If f(x) f′(x)f′(x)f′′(x)=0, for all x∈R, then the value of f(1) lies in the interval:
A
(9,12)
B
(6,9)
C
(0,3)
D
(3,6)
Answer
(6,9)
Explanation
Solution
f(x)f′′(x)−(f′(x))2=0 f′(x)f′′(x)=f(x)f′(x) ln (f′(x))=lnf(x)+lnc f′(x)=cf(x) f(x)f′(x)=c lnf(x)=cx+k1 f(x)=kecx f(0)=1=k f′(0)=c=2 f(x)=e2x f(1)=e2∈(6,9)