Solveeit Logo

Question

Question: Let f be a real valued function satisfying f(x) + f(x + 6) = f(x + 3) + f(x + 9). Then \(\int_{x}^{...

Let f be a real valued function satisfying

f(x) + f(x + 6) = f(x + 3) + f(x + 9). Then xx+12\int_{x}^{x + 12}{}f(t) dt is

A

A linear function of x

B

An exponential function of x

C

A constant function

D

None of these

Answer

A constant function

Explanation

Solution

f(x) + f(x + 6) = f(x + 3) + f(x+9) …(1)

x = x + 3

f(x + 3) + f(x + 9) = f(x + 6) + f(x + 12)

from eqn (1)

f(x) + f(x + 6) – f(x + 9) + f(x + 9)

= f(x + 6) + f(x + 12)

f(x) = f(x + 12)

Let g(x) = xx+12\int_{x}^{x + 12}{}f(t) dt

g'(x) = [f(t)]xx+12\left\lbrack f(t) \right\rbrack_{x}^{x + 12}

g ' (x) = f(x + 12) – f(x) = 0

So g(x) is a constant function