Solveeit Logo

Question

Question: Let f be a real valued function defined on the interval (-1, 1) such that \({e^{ - x}}f\left( x \rig...

Let f be a real valued function defined on the interval (-1, 1) such that exf(x)=2+0xt4+1dt{e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} , for all x(1,1)x \in \left( { - 1,1} \right) and let f1{f^{ - 1}} be the inverse function of ff. Then (f1)(2){\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right) is equal to
(a)\left( a \right) 1
(b)\left( b \right) 1/3
(c)\left( c \right) 1/2
(d)\left( d \right) 1/e

Explanation

Solution

In this particular question use the concept that inverse function is a function that reverses another function so if f1{f^{ - 1}} be the inverse function of ff, then f(f1(x))f\left( {{f^{ - 1}}\left( x \right)} \right) = x, then differentiate both sides w.r.t. x to calculate the value of f’ (x) in terms of h’ (f (x)), so use these concepts to reach the solution of the question.

Complete step-by-step answer :
Given data:
Let f be a real valued function defined on the interval (-1, 1), such that exf(x)=2+0xt4+1dt{e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} , for all x(1,1)x \in \left( { - 1,1} \right) and letf1{f^{ - 1}} be the inverse function of ff.
So if f1{f^{ - 1}} be the inverse function of ff, then f(f1(x))f\left( {{f^{ - 1}}\left( x \right)} \right) = x............... (1)
Now differentiate the above equation w.r.t x we have,
ddx[f(f1(x))]=ddxx\Rightarrow \dfrac{d}{{dx}}\left[ {f\left( {{f^{ - 1}}\left( x \right)} \right)} \right] = \dfrac{d}{{dx}}x
Now as we know that ddxu(g(x))=ug(x)ddxg(x),ddxx=1\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1, so use this property in the above equation we have,
f(f1(x))ddxf1(x)=1\Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right)\dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = 1
f(f1(x))(f1(x))=1\Rightarrow f'\left( {{f^{ - 1}}\left( x \right)} \right){\left( {{f^{ - 1}}\left( x \right)} \right)^\prime } = 1, [ddxf1(x)=(f1(x))]\left[ {\because \dfrac{d}{{dx}}{f^{ - 1}}\left( x \right) = {{\left( {{f^{ - 1}}\left( x \right)} \right)}^\prime }} \right]
Now substitute in place of x, 2 we have,

f(f1(2))(f1(2))=1 \Rightarrow f'\left( {{f^{ - 1}}\left( 2 \right)} \right){\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = 1
(f1(2))=1f(f1(2))\Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( {{f^{ - 1}}\left( 2 \right)} \right)}}.................. (2)
Now it is given that,
exf(x)=2+0xt4+1dt{e^{ - x}}f\left( x \right) = 2 + \int_0^x {\sqrt {{t^4} + 1} dt} ................. (3)
Now putting x = 0 in the above equation we have,
e0f(0)=2+00t4+1dt\Rightarrow {e^{ - 0}}f\left( 0 \right) = 2 + \int_0^0 {\sqrt {{t^4} + 1} dt}
Now as we know that 00f(t)dt=0,e0=1\int_0^0 {f\left( t \right)dt = 0,{e^{ - 0}} = 1}
f(0)=2\Rightarrow f\left( 0 \right) = 2................ (4)
Now from equation (1) and (4) we have,
f(f1(x))f\left( {{f^{ - 1}}\left( x \right)} \right)= x, f(0)=2f\left( 0 \right) = 2
So on comparing, f1(2)=0{f^{ - 1}}\left( 2 \right) = 0
Now substitute this value in equation (2) we have,
(f1(2))=1f(0)\Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{{f'\left( 0 \right)}}............. (5)
Now differentiate equation (3) w.r.t x we have,
ddx[exf(x)]=ddx(2+0xt4+1dt)\Rightarrow \dfrac{d}{{dx}}\left[ {{e^{ - x}}f\left( x \right)} \right] = \dfrac{d}{{dx}}\left( {2 + \int_0^x {\sqrt {{t^4} + 1} dt} } \right)
Now as we know that ddx(0xt4+1dt)=(t4+1)t=x(t4+1)t=0\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}}, ddx(ab)=addxb+bddxa,ddxex=ex\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}} and the differentiation of constant term is zero, so use these properties in the above equation we have,
[exf(x)+f(x)(ex)]=(0+(t4+1)t=x(t4+1)t=0)\Rightarrow \left[ {{e^{ - x}}f'\left( x \right) + f\left( x \right)\left( { - {e^{ - x}}} \right)} \right] = \left( {0 + {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = x}} - {{\left( {\sqrt {{t^4} + 1} } \right)}_{t = 0}}} \right)
exf(x)f(x)ex=x4+10\Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1} - 0
exf(x)f(x)ex=x4+1\Rightarrow {e^{ - x}}f'\left( x \right) - f\left( x \right){e^{ - x}} = \sqrt {{x^4} + 1}
Now substitute in place of x, 0 we have,
e0f(0)f(0)e0=04+1\Rightarrow {e^{ - 0}}f'\left( 0 \right) - f\left( 0 \right){e^{ - 0}} = \sqrt {{0^4} + 1}
f(0)f(0)=1\Rightarrow f'\left( 0 \right) - f\left( 0 \right) = 1
Now from equation (4), f (0) = 2, so we have,
f(0)2=1\Rightarrow f'\left( 0 \right) - 2 = 1
f(0)=1+2=3\Rightarrow f'\left( 0 \right) = 1 + 2 = 3
Now substitute this value in equation (5) we have,
(f1(2))=13\Rightarrow {\left( {{f^{ - 1}}\left( 2 \right)} \right)^\prime } = \dfrac{1}{3}
(f1)(2)=13\Rightarrow {\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right) = \dfrac{1}{3}
So this is the required answer.
Hence option (b) is the correct answer.

Note :Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as ddxu(g(x))=ug(x)ddxg(x),ddxx=1\dfrac{d}{{dx}}u\left( {g\left( x \right)} \right) = u'g\left( x \right)\dfrac{d}{{dx}}g\left( x \right),\dfrac{d}{{dx}}x = 1, ddx(0xt4+1dt)=(t4+1)t=x(t4+1)t=0\dfrac{d}{{dx}}\left( {\int_0^x {\sqrt {{t^4} + 1} dt} } \right) = {\left( {\sqrt {{t^4} + 1} } \right)_{t = x}} - {\left( {\sqrt {{t^4} + 1} } \right)_{t = 0}},ddx(ab)=addxb+bddxa,ddxex=ex\dfrac{d}{{dx}}\left( {ab} \right) = a\dfrac{d}{{dx}}b + b\dfrac{d}{{dx}}a,\dfrac{d}{{dx}}{e^{ - x}} = - {e^{ - x}}so differentiate the equation (1) by using first property and equation (3) by using second properties and then substitute the values as above we will get the required value of (f1)(2){\left( {{f^{ - 1}}} \right)^\prime }\left( 2 \right).