Solveeit Logo

Question

Question: Let f be a real valued function defined by $f(x) = \frac{e^{x} - e^{-|x|}}{e^{x} + e^{|x|}},$ then ...

Let f be a real valued function defined by

f(x)=exexex+ex,f(x) = \frac{e^{x} - e^{-|x|}}{e^{x} + e^{|x|}}, then the range of f(x) is

A

(0,1)(0,1)

B

[0,1)[0,1)

C

(1,1)(-1,1)

D

[0,1/2)[0, 1/2)

Answer

[0, 1/2)

Explanation

Solution

The function is given by f(x)=exexex+exf(x) = \frac{e^{x} - e^{-|x|}}{e^{x} + e^{|x|}}. To determine the range of f(x)f(x), we need to analyze the function based on the definition of x|x|. We consider two cases: x0x \ge 0 and x<0x < 0.

Case 1: x0x \ge 0

In this case, x=x|x| = x. Substitute x=x|x|=x into the function:

f(x)=exexex+ex=exex2ex=1212e2xf(x) = \frac{e^{x} - e^{-x}}{e^{x} + e^{x}} = \frac{e^{x} - e^{-x}}{2e^{x}} = \frac{1}{2} - \frac{1}{2}e^{-2x}

Now, let's find the range of f(x)f(x) for x0x \ge 0. Since x0x \ge 0:

2x02x \ge 0

2x0-2x \le 0

e2xe0e^{-2x} \le e^0

e2x1e^{-2x} \le 1

Also, as xx \to \infty, e2x0e^{-2x} \to 0. So, 0<e2x10 < e^{-2x} \le 1.

Now, let's build up the expression for f(x)f(x):

12(1)12e2x<12(0)-\frac{1}{2}(1) \le -\frac{1}{2}e^{-2x} < -\frac{1}{2}(0)

1212e2x<0-\frac{1}{2} \le -\frac{1}{2}e^{-2x} < 0

12121212e2x<12+0\frac{1}{2} - \frac{1}{2} \le \frac{1}{2} - \frac{1}{2}e^{-2x} < \frac{1}{2} + 0

0f(x)<frac120 \le f(x) <frac{1}{2}

So, for x0x \ge 0, the range of f(x)f(x) is [0,12)[0, \frac{1}{2}). Note that f(0)=1212e0=1212=0f(0) = \frac{1}{2} - \frac{1}{2}e^{0} = \frac{1}{2} - \frac{1}{2} = 0, which is the lower bound.

Case 2: x<0x < 0

In this case, x=x|x| = -x. Substitute x=x|x|=-x into the function:

f(x)=exe(x)ex+ex=exexex+ex=0ex+exf(x) = \frac{e^{x} - e^{-(-x)}}{e^{x} + e^{-x}} = \frac{e^{x} - e^{x}}{e^{x} + e^{-x}} = \frac{0}{e^{x} + e^{-x}}

Since ex>0e^x > 0 and ex>0e^{-x} > 0 for all real xx, the denominator ex+exe^x + e^{-x} is always positive and never zero. Therefore, for x<0x < 0, f(x)=0f(x) = 0. The range for this case is {0}\{0\}.

Combining the ranges

The total range of f(x)f(x) is the union of the ranges from both cases:

Range of f(x)={0}[0,12)f(x) = \{0\} \cup [0, \frac{1}{2})

Range of f(x)=[0,12)f(x) = [0, \frac{1}{2})