Question
Mathematics Question on Definite Integral
Let f be a real valued continuous function on [0, 1] and
f(x)=x+∫01(x−t)f(t)dt
Then, which of the following points (x, y) lies on the curve y = f(x)?
A
(2, 4)
B
(1, 2)
C
(4, 17)
D
(6, 8)
Answer
(6, 8)
Explanation
Solution
The correct answer is (D) : (6,8)
f(x)=x∫01(x−t)f(t)dt
f(x)=x+x∫01f(t)dt−∫01t⋅f(t)dt
f(x)=x(1+∫01f(t)dt)−∫01t⋅f(t)dt
Let
1+∫01f(t)dt=aand∫01t⋅f(t)dt=1
f(x) = ax-b
Now,
a=1+∫01(at−b)dt=1+2a−b⟹2a+b=1
b=∫01t(at−b)dt=3a−2b⟹23b=3a⟹b=92a
2a+92a=1
⇒a=1318 b=134
ƒ(x)=1318x−4
(6,8) lies on f(x)