Question
Mathematics Question on Integrals of Some Particular Functions
Let f be a non-negative function defined on the interval [0,1].if ∫0x1−(f′(t))2dt=∫0xf(t)dt,0≤x≤1 and f(0)=0, then
A
f(21)<21andf(31)>31
B
f(21)>21andf(31)>31
C
f(21)<21andf(31)<31
D
f(21)>21andf(31)<31
Answer
f(21)<21andf(31)<31
Explanation
Solution
Given ∫0x1−(f′(t))2dt=∫0xf(t)dt,0≤x≤1
Differentiating both sides w.r.t. x by using Leibnitz's
rule, we get
1−f′(x)2=f(x)⇒f′(x)=±1−f(x)2
⇒∫1−(x)2f′(x)dx=±∫dx⇒sin−1f(x)=±x+c
Put x=0⇒sin(−1)f(0)=c
⇒c=sin−1(0)=0[∵f(0)=0]
∴f(x)=±sinx
but f(x)≥0,∀x∈[0,1]
∴f(x)=sinx
As we know that,
sin x < x , ∀ x > 0
$\therefore , , , , , , , , , sin\bigg(\frac{1}{2}\bigg)