Solveeit Logo

Question

Mathematics Question on Integrals of Some Particular Functions

Let ff be a non-negative function defined on the interval [0,1].if 0x1(f(t))2dt=0xf(t)dt,0x1\int_0^x \sqrt{1-(f'(t))^2}dt = \int_0^x f(t) dt , 0 \le x \le 1 and f(0)=0f (0) = 0, then

A

f(12)<12andf(13)>13f\bigg(\frac{1}{2}\bigg) < \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) > \frac{1}{3}

B

f(12)>12andf(13)>13f\bigg(\frac{1}{2}\bigg) > \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) > \frac{1}{3}

C

f(12)<12andf(13)<13f\bigg(\frac{1}{2}\bigg) < \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) < \frac{1}{3}

D

f(12)>12andf(13)<13f\bigg(\frac{1}{2}\bigg) > \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) < \frac{1}{3}

Answer

f(12)<12andf(13)<13f\bigg(\frac{1}{2}\bigg) < \frac{1}{2} \, and \, f \bigg(\frac{1}{3}\bigg) < \frac{1}{3}

Explanation

Solution

Given 0x1(f(t))2dt=0xf(t)dt,0x1\int_0^x \sqrt{1-(f'(t))^2}dt = \int_0^x f(t) dt , 0 \le x \le 1
Differentiating both sides w.r.t. x by using Leibnitz's
rule, we get
1f(x)2=f(x)f(x)=±1f(x)2\sqrt{1- \\{f'(x) \\}^2} =f(x) \, \, \Rightarrow \, \, f'(x) = \pm \sqrt {1- \\{f(x)\\}^2}
f(x)1(x)2dx=±dxsin1f(x)=±x+c\Rightarrow \, \, \, \, \, \, \, \int \frac{f'(x)}{\sqrt{1-\\{(x)\\}^2}}dx =\pm \int dx \, \Rightarrow \, \, sin^{-1}\\{f(x)\\} =\pm x+c
Put x=0sin(1)f(0)=c \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, x=0 \, \Rightarrow \, \, sin^(-1) \\{f(0)\\}=c
c=sin1(0)=0[f(0)=0]\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, c=sin^{-1} (0)=0 \, \, \, \, \, \, \, \, \, \, \, \, [\because f(0)=0]
f(x)=±sinx\therefore \, \, \, \, \, f(x)=\pm sin x
but f(x)0,x[0,1] \, \, \, \, f(x) \ge 0, \forall \, x\in \, [0,1]
f(x)=sinx\therefore \, \, f(x) =sin x
As we know that,
sin x < x , \forall x > 0
$\therefore , , , , , , , , , sin\bigg(\frac{1}{2}\bigg)