Solveeit Logo

Question

Quantitative Aptitude Question on Functions

Let f be a function such that f (mn) = f (m) f (n) for every positive integers m and n. If f (1), f (2) and f (3) are positive integers, f (1) < f (2), and f (24) = 54, then f (18) equals

A

12

B

14

C

17

D

22

Answer

12

Explanation

Solution

Given f(mn)=f(m)f(n)f(mn)=f(m)f(n) and f(24)=54,f(24)=54,
f(24)=2×3×3×3f(24)=2×3×3×3
f(2×12)=f(2)f(12)=f(2)f(2×6)=f(2)f(2)f(6)=f(2)f(2)f(2×3)=f(2)f(2)f(2)f(3)=2×3×3×3f(2×12)=f(2)f(12)=f(2)f(2×6)=f(2)f(2)f(6)=f(2)f(2)f(2×3)=f(2)f(2)f(2)f(3)=2×3×3×3
Given that f(1),f(2)f(1), f(2), and f(3)f(3) are all positive integers, by comparison, we get f(2)=3f(2)=3 and f(3)=2f(3)=2. We can safely take f(1)=1.f(1)=1.
Now, f(18)=f(2)(9)=f(2)f(3×3)=f(2)f(3)f(3)=3×2×2=12.f(18)=f(2)(9)=f(2)f(3×3)=f(2)f(3)f(3)=3×2×2=12.