Question
Question: Let f be a function defined on R (the set of all real numbers) such that,\[f'\left( x \right) = 2010...
Let f be a function defined on R (the set of all real numbers) such that,f′(x)=2010(x−2009)(x−2010)2(x−2011)3(x−2012)4, for all x∈R. If g is a function defined on R with values in the interval (0, ∞) such that f (x) = ln (g(x)), for all x∈R, then the number of points in R at which g has a local maximum is
(a) 0
(b) 1
(c) 2
(d) 3
Solution
In this particular question to find the maxima and minima differentiate the given function w.r.t x and equate to zero and solve for x, then again differentiate the given function and calculate its value on previous calculated x value if we got positive than it is a minima and if we got negative than it is a maxima so use these concepts to reach the solution of the question.
Complete step-by-step answer :
Given data:
Let f be a function defined on R (the set of all real numbers) such that, f′(x)=2010(x−2009)(x−2010)2(x−2011)3(x−2012)4................... (1), for all x∈R.
Now the given function is
f (x) = ln (g(x)), for all x∈R.
Now take antilog on both sides we have,
⇒ef(x)=g(x)
Now differentiate the above equation w.r.t x and equate to zero we have,
⇒dxdef(x)=dxdg(x)=0
Now as we know that dxdef(x)=ef(x)dxdf(x) so we have,
⇒ef(x)dxdf(x)=dxdg(x)=0
⇒ef(x)f′(x)=g′(x)=0............... (2)
Now substitute the value of f’ (x) from equation (1) in the above equation we have,
⇒ef(x)2010(x−2009)(x−2010)2(x−2011)3(x−2012)4=0
So from the above equation we can say that 2010(x−2009)(x−2010)2(x−2011)3(x−2012)4=0 and ef(x)=0.
⇒2010(x−2009)(x−2010)2(x−2011)3(x−2012)4=0
So from this the values of x are,
⇒x=2009,2010,2011,2012
Now again differentiate the equation (2) we have
⇒dxdg′(x)=dxd[ef(x)f′(x)]
⇒dxdg′(x)=g′′(x)=[ef(x)dxdf′(x)+f′(x)dxdef(x)]
⇒dxdg′(x)=g′′(x)=[ef(x)f′′(x)+f′(x)ef(x)f′(x)]
⇒g′′(x)=ef(x)f′′(x)+[f′(x)]2ef(x)............... (3)
Now differentiate equation (1) w.r.t x we have,
⇒dxdf′(x)=dxd[2010(x−2009)(x−2010)2(x−2011)3(x−2012)4]
Now as we know that dxdabcd=adxdbcd+bcddxda, dxdbcd=bdxdcd+cddxdb, dxdcd=cdxdd+ddxdc, dxd(f(x))n=n(f(x))n−1dxdf(x) so use this property in the above equation we have,
\Rightarrow f''\left( x \right) = 2010\left\\{ {\left( {x-2009} \right)\dfrac{d}{{dx}}\left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right] + \left[ {{{\left( {x - 2010} \right)}^2}{{\left( {x - 2011} \right)}^3}{{\left( {x - 2012} \right)}^4}} \right]} \right\\}
⇒f′′(x)=2010(x−2010)2(x−2011)3(x−2012)4+2010(x−2009)(x−2010)2dxd(x−2011)3(x−2012)4 \+2010(x−2009)(x−2011)3(x−2012)4dxd(x−2010)2 ⇒f′′(x)=2010(x−2010)2(x−2011)3(x−2012)4+2010(x−2009)(x−2011)3(x−2012)42(x−2010) \+2010(x−2009)(x−2010)2dxd(x−2011)3(x−2012)4 ⇒f′′(x)=2010(x−2010)2(x−2011)3(x−2012)4+2010(x−2009)(x−2011)3(x−2012)42(x−2010) \+2010(x−2009)(x−2010)2(x−2011)3dxd(x−2012)4+2010(x−2009)(x−2010)2(x−2012)4dxd(x−2011)3 ⇒f′′(x)=2010(x−2010)2(x−2011)3(x−2012)4+2010(x−2009)(x−2011)3(x−2012)42(x−2010) \+2010(x−2009)(x−2010)2(x−2011)34(x−2012)3+2010(x−2009)(x−2010)2(x−2012)43(x−2011)2Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
⇒g′′(x)=ef(x)f′′(x)+[f′(x)]2ef(x)
Now when, x = 2009
⇒f′′(2009)=2010(2009−2010)2(2009−2011)3(2009−2012)4+0+0+0
⇒f′′(2009)=2010(−1)2(−2)3(−3)4
⇒f′′(2009)=2010[(1)(−8)(81)]
⇒f′′(2009)=−2010(8)(81)
Now when, x = 2010, 2011, 2012
⇒f′′(2010)=f′′(2011)=f′′(2012)=0
And when, x = 2009, 2010, 2011, 2012 the value of f’ (x) is
f′(2009)=f′(2010)=f′(2011)=f′(2012)=0
Now substitute the values of f’(x) and f’’(x) in equation (3) we have,
⇒g′′(x)=ef(x)f′′(x)+[f′(x)]2ef(x)
⇒g′′(2009)=ef(2009)f′′(2009)+[f′(2009)]2ef(2009)=ef(2009)(−2010(81)(8)) = negative so it is a local maxima.
⇒g′′(2009)=g′′(2010)=g′′(2011)=g′′(2012)=0, So at these values function is neither maximum nor minimum.
So there is only 1 point in R at which g has a local maximum which is 2009.
So this is the required answer.
Hence option (b) is the correct answer.
Note : Whenever we face such types of questions the key concept we have to remember is that always recall the basic differentiation property which is given as dxdabcd=adxdbcd+bcddxda, dxdbcd=bdxdcd+cddxdb, dxdcd=cdxdd+ddxdc, dxd(f(x))n=n(f(x))n−1dxdf(x), dxd(x−a)=1.