Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f be a function defined by f(x)=(x1)2+1,(x1)f\left(x\right) = \left(x-1\right)^{2 }+ 1, \left(x \ge 1\right). The set \left\\{x : f\left(x\right) = f^{-1}\left(x\right)\right\\} =\left\\{ 1, 2\right\\} f is a bijection and f1(x)=1+x1,x1. f^{-1}\left(x\right) = 1+\sqrt{x-1}, x \ge 1.

A

Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

B

Statement-1 is true, Statement-2 is true; Statement-2 is NOT a correct explanation for Statement-1

C

Statement-1 is true, Statement-2 is false

D

Statement-1 is false, Statement-2 is true.

Answer

Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

Explanation

Solution

f(x)=(x1)2+1,x1f\left(x\right) = \left(x - 1\right)^{2} + 1, x \ge 1 f:[1,)[1,)f : [1, \infty) \to [1, \infty) is a bijective function y=(x1)2+1(x1)2=y1\Rightarrow\,y = \left(x - 1\right)^{2} + 1 \Rightarrow \left(x - 1\right)^{2} = y - 1 x=1±y1f1(y)=1±y1\Rightarrow x = 1 \pm \sqrt{y-1}\Rightarrow f^{-1} \left(y\right) = 1 \pm \sqrt{y-1} \Rightarrow f^{-1}\left(x\right) = 1+\sqrt{x+1}\quad\left\\{\therefore\,x \ge 1\right\\} so statement-2 is correct Now f(x)=f1(x)f(x)=x(x1)2+1=xf\left(x\right) = f ^{-1}\left(x\right) \Rightarrow f\left(x\right) = x \Rightarrow \left(x - 1\right)^{2} + 1 = x x23x+2=0x=1,2\Rightarrow x^{2} - 3x + 2 = 0 \Rightarrow x = 1, 2 so statement-1 is correct