Solveeit Logo

Question

Question: Let f be a differentiable function such that \({f}'\left( x \right)=7-\frac{3}{4}\frac{f\left( x \ri...

Let f be a differentiable function such that f(x)=734f(x)x{f}'\left( x \right)=7-\frac{3}{4}\frac{f\left( x \right)}{x}, (x>0) and f(1)4f\left( 1 \right)\ne 4. Then limx0+xf(1x)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,xf\left( \frac{1}{x} \right):
(a) exists and equals 4
(b) does not exist
(c) exist and equals
(d) exists and equals 47\frac{4}{7}

Explanation

Solution

First, before proceeding for this, we must know the following given equation is the linear differential equation of the form as dydx+3y4x=7\frac{dy}{dx}+\frac{3y}{4x}=7. Then, to get the solution of the above differential equation in the form dydx+Py=Q\frac{dy}{dx}+Py=Q, we need a integrating factor(IF) given by the formula asIF=ePdxIF={{e}^{\int{Pdx}}}. Then, to get the solution of the above differential equation in the form dydx+Py=Q\frac{dy}{dx}+Py=Q, we have the form of solution asy×IF=Q×IFdx+cy\times IF=\int{Q\times IF}dx+c. Then, we are required to find the value of f(1x)f\left( \frac{1}{x} \right), so we replace x by 1x\frac{1}{x} in the above expression and find the value of limit as required.

Complete step by step answer:
In this question, we are supposed to find the value of limx0+xf(1x)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,xf\left( \frac{1}{x} \right)with given conditions that f be a differentiable function such that f(x)=734f(x)x{f}'\left( x \right)=7-\frac{3}{4}\frac{f\left( x \right)}{x}, (x>0) and f(1)4f\left( 1 \right)\ne 4.
So, before proceeding for this, we must know the following given equation is the linear differential equation of the form as:
dydx+3y4x=7\frac{dy}{dx}+\frac{3y}{4x}=7
Now, to get the solution of the above differential equation in the form dydx+Py=Q\frac{dy}{dx}+Py=Q, we need a integrating factor(IF) given by the formula as:
IF=ePdxIF={{e}^{\int{Pdx}}}
So, the value of P from the above differential equation is 34x\frac{3}{4x} to get the value of IF as:
IF=e34xdx IF=e34lnx IF=x34 \begin{aligned} & IF={{e}^{\int{\frac{3}{4x}dx}}} \\\ & \Rightarrow IF={{e}^{\frac{3}{4}\ln \left| x \right|}} \\\ & \Rightarrow IF={{x}^{\frac{3}{4}}} \\\ \end{aligned}
Now, to get the solution of the above differential equation in the form dydx+Py=Q\frac{dy}{dx}+Py=Q, we have the form of solution as:
y×IF=Q×IFdx+cy\times IF=\int{Q\times IF}dx+c
Then, by substituting the value of IF and Q, we get:
y×x34=7×x34dx+cy\times {{x}^{\frac{3}{4}}}=\int{7\times {{x}^{\frac{3}{4}}}}dx+c
Then, by solving the above integration, we get:
y×x34=7x7474+c y=4x+c×x34 \begin{aligned} & y\times {{x}^{\frac{3}{4}}}=7\frac{{{x}^{\frac{7}{4}}}}{\frac{7}{4}}+c \\\ & \Rightarrow y=4x+c\times {{x}^{\frac{-3}{4}}} \\\ \end{aligned}
So, we can see clearly that by solving the integral we get the value of f(x) as:
f(x)=4x+c×x34f\left( x \right)=4x+c\times {{x}^{\frac{-3}{4}}}
Then, we are required to find the value of f(1x)f\left( \frac{1}{x} \right), so we replace x by 1x\frac{1}{x} in the above expression and we get:
f(1x)=4x+c×x34f\left( \frac{1}{x} \right)=\frac{4}{x}+c\times {{x}^{\frac{3}{4}}}
Then, we are required to find the value of limx0+xf(1x)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,xf\left( \frac{1}{x} \right) by substituting the value of f(1x)f\left( \frac{1}{x} \right), we get:
limx0+xf(1x)=limx0+x(4x+c×x34)\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,xf\left( \frac{1}{x} \right)=\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x\left( \frac{4}{x}+c\times {{x}^{\frac{3}{4}}} \right)
Then, by substituting the limit in the function, we get:
limx0+x(4x+c×x34)=4\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,x\left( \frac{4}{x}+c\times {{x}^{\frac{3}{4}}} \right)=4
So, the value of the limit exists and is equal to 4.
Hence, option (a) is correct.

Note:
Now, to solve these types of the questions we need to know some of the basic formulas for the integration beforehand to get the answer easily and accurately. So, the basic integration formulas are:
xndx=xn+1n+1+c 1xdx=lnx+c \begin{aligned} & \int{{{x}^{n}}dx=\frac{{{x}^{n+1}}}{n+1}+c} \\\ & \int{\frac{1}{x}dx}=\ln \left| x \right|+c \\\ \end{aligned}