Solveeit Logo

Question

Mathematics Question on Calculus

Let ff be a differentiable function in the interval (0,)(0, \infty) such that f(1)=1f(1) = 1 and limtxt2f(x)x2f(t)tx=1\lim_{t \to x} \frac{t^2 f(x) - x^2 f(t)}{t - x} = 1 for each x>0x > 0.
Then 2f(2)+3f(3)2f(2) + 3f(3) is equal to _________.

Answer

Applying L'Hôpital's rule, we differentiate the numerator and the denominator:

limtxt2f(x)x2f(t)tx=1\lim_{t \to x} \frac{t^2 f(x) - x^2 f(t)}{t - x} = 1 limtx2tf(x)x2f(x)1=1\lim_{t \to x} \frac{2t f(x) - x^2 f'(x)}{1} = 1

Simplifying, we get:

2xf(x)x2f(x)=12x f(x) - x^2 f'(x) = 1

Rearranging terms:

dydx=2xwhere y=1x2\frac{dy}{dx} = \frac{2}{x} \quad \text{where } y = -\frac{1}{x^2}

The differential equation becomes:

dydx+yx=2x2\frac{dy}{dx} + \frac{y}{x} = \frac{2}{x^2}

Solving this differential equation, we assume:

y=13x+2x23,leading to: y=2x3+13xy = \frac{1}{3x} + \frac{2x^2}{3}, \quad \text{leading to: } y = \frac{2x^3 + 1}{3x}

Calculating specific values:

f(2)=176,f(3)=559f(2) = \frac{17}{6}, \quad f(3) = \frac{55}{9}

Thus: 2f(2)+3f(3)=173+553=723=242f(2) + 3f(3) = \frac{17}{3} + \frac{55}{3} = \frac{72}{3} = 24