Question
Mathematics Question on Differential equations
Let f be a differentiable function in (0,2π). If ∫cosx1t2f(t)dt=sin3x+cosx, then 31f′(31) is equal to
A
6−92
B
6−29
C
29−62
D
29−6
Answer
6−29
Explanation
Solution
∫cosx1t2f(t)dt=sin3x+cosx
⇒sinxcos2xf(cosx)=3sin2xcosx–sinx
⇒f(cosx)=3tanx–sec2x
⇒f′(cosx).(–sinx)=3sec2x–2sec2xtanx
Put cosx=31,
∴f′(31)(−32)=9−62
31f′(31)=6–29