Question
Mathematics Question on Logarithmic Differentiation
Let f be a differentiable function defined on [0,2π] such that f(x)>0; and f(x)+0∫xf(t)1−(logef(t))2dt=e,∀x∈[0,2π] Then (6logef(6π))2 is equal to _______
Answer
The correct answer is 27
f(x)+0∫xf(t)1−(logef(t))2dt=e
⇒f(0)=e
f′(x)+f(x)1−(lnf(x))2=0
f(x)=y
dxdy=−y1−(lny)2
∫y1−(lny)2dy=−∫dx
Put lny=t
∫1−t2dt=−x+C
sin−1t=−x+C⇒sin−1(lny)=−x+C
sin−1(lnf(x))=−x+C
f(0)=e
⇒2π=C
⇒sin−1(lnf(x))=−x+2π
⇒sin−1(lnf(6π))=6−π+2π
⇒sin−1(lnf(6π))=3π
⇒lnf(6π)=23, we need (6×23)2=27