Solveeit Logo

Question

Question: Let $f$ be a continuous and differentiable function in $(k_1, k_2)$. If $f(x) \cdot f'(x) \geq x\sqr...

Let ff be a continuous and differentiable function in (k1,k2)(k_1, k_2). If f(x)f(x)x1(f(x))4f(x) \cdot f'(x) \geq x\sqrt{1-(f(x))^4} and limxk1+(f(x))2=1\lim_{x \to k_1^{+}} (f(x))^2 = 1 & limxk2(f(x))2=12\lim_{x \to k_2^{-}} (f(x))^2 = \frac{1}{2}. Then minimum value of [k124k22][\frac{k_1^2}{4} - k_2^2] is where [.][.] represents greatest integer function.

Answer

0

Explanation

Solution

We start with

f(x)f(x)x1(f(x)4),f(x)f'(x)\ge x\sqrt{1-\bigl(f(x)^4\bigr)},

which we rewrite by noting that

ddx(f(x)2)=2f(x)f(x).\frac{d}{dx}\Bigl(f(x)^2\Bigr)=2f(x)f'(x).

Thus

12ddx(f(x)2)x1(f(x)4).\frac{1}{2}\frac{d}{dx}\Bigl(f(x)^2\Bigr)\ge x\sqrt{1-\bigl(f(x)^4\bigr)}.

Introduce the substitution

u(x)=f(x)2so thatf(x)4=u(x)2.u(x)=f(x)^2\quad\text{so that}\quad f(x)^4=u(x)^2.

Then

dudx2x1u2.\frac{du}{dx}\ge 2x\sqrt{1-u^2}.

Now, integrate from x=k1x=k_1 to x=k2x=k_2. The given limits are

u(k1)=limxk1+f(x)2=1,u(k2)=limxk2f(x)2=12.u(k_1)=\lim_{x\to k_1^+}f(x)^2=1,\quad u(k_2)=\lim_{x\to k_2^-}f(x)^2=\frac12.

Integrate the inequality in the “equality‐case” (which gives the best possibility for “optimizing” the endpoints)

u=11/2du1u2=x=k1k22xdx.\int_{u=1}^{1/2}\frac{du}{\sqrt{1-u^2}}=\int_{x=k_1}^{k_2}2x\,dx.

The left‐side is computed as

11/2du1u2=arcsin(u)11/2=arcsin(12)arcsin(1)=π6π2=π3.\int_{1}^{1/2}\frac{du}{\sqrt{1-u^2}} = \arcsin(u)\Big|_{1}^{1/2} = \arcsin\Bigl(\frac{1}{2}\Bigr)-\arcsin(1) =\frac{\pi}{6}-\frac{\pi}{2}=-\frac{\pi}{3}.

The right‐side is

k1k22xdx=x2k1k2=k22k12.\int_{k_1}^{k_2}2x\,dx=x^2\Big|_{k_1}^{k_2}=k_2^2-k_1^2.

Thus we have

π3k22k12k12k22π3.-\frac{\pi}{3}\ge k_2^2-k_1^2\quad\Longrightarrow\quad k_1^2-k_2^2\ge\frac{\pi}{3}.

Now, our expression of interest is

A=k124k22.A=\frac{k_1^2}{4}-k_2^2.

Write k12=k22+Δk_1^2=k_2^2+\Delta where Δπ3\Delta\ge \frac{\pi}{3}. Then

A=k22+Δ4k22=Δ43k224.A=\frac{k_2^2+\Delta}{4}-k_2^2=\frac{\Delta}{4}-\frac{3k_2^2}{4}.

To maximize (i.e. “minimize the loss” in the greatest‐integer sense) this quantity we choose the smallest allowed Δ=π3\Delta=\frac{\pi}{3} and try to make k22k_2^2 as small as possible. Clearly we may take

k22=0,k_2^2=0,

which (with k12=π3k_1^2=\frac{\pi}{3}) is admissible if one chooses the interval as (k1,k2)=(π3,0)(k_1,k_2)=\Bigl(-\sqrt{\frac{\pi}{3}},\,0\Bigr).

In that case the value becomes

A=π/340=π120.2618.A=\frac{\pi/3}{4}-0=\frac{\pi}{12}\approx 0.2618.

Since the floor function [][\,\cdot\,] (greatest integer function) takes the greatest integer less than or equal to its argument, we have

[k124k22]=[π12]=0.\left[\frac{k_1^2}{4}-k_2^2\right]=\left[\frac{\pi}{12}\right]=0.