Solveeit Logo

Question

Mathematics Question on Differential equations

Let f and g be twice differentiable functions on R such that
f''(x)=g''(x)+6x
f''(1)=4g'(1)-3=9
f(2)=3g(2)=12.
Then which of the following is NOT true?

A

If 1<𝑥<2−1<𝑥<2, then 𝑓(𝑥)𝑔(𝑥)<8|𝑓(𝑥)−𝑔(𝑥)|<8

B

𝑓(𝑥)𝑔(𝑥)<61<𝑥<1|𝑓'(𝑥)−𝑔'(𝑥)|<6⇒−1<𝑥<1

C

𝑔(2)𝑓(2)=20𝑔(−2)−𝑓(−2)=20

D

There exists 𝑥0(1,32)𝑥_0∈(1,\frac{3}{2}) such that 𝑓(𝑥0)=𝑔(𝑥0)𝑓(𝑥0)=𝑔(𝑥0)

Answer

If 1<𝑥<2−1<𝑥<2, then 𝑓(𝑥)𝑔(𝑥)<8|𝑓(𝑥)−𝑔(𝑥)|<8

Explanation

Solution

The Correct option is (A): If 1<𝑥<2−1<𝑥<2, then 𝑓(𝑥)𝑔(𝑥)<8|𝑓(𝑥)−𝑔(𝑥)|<8