Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f(a)=g(a)=kf (a) = g(a) = k and their nth derivatives fn(a),gn(a)f^n (a), g^n (a) exist and are not equal for some n. Further if limxaf(a)g(x)f(a)g(a)f(x)+f(a)g(x)f(x)=4\displaystyle\lim_{x \to a} \frac{f\left(a\right)g\left(x\right) -f\left(a\right) -g\left(a\right)f\left(x\right)+f\left(a\right)}{g\left(x\right)-f\left(x\right)} = 4 then the value of k is

A

0

B

4

C

2

D

1

Answer

4

Explanation

Solution

limxaf(a)g(x)g(a)f(x)g(x)f(x)=4\displaystyle\lim_{x \to a} \frac{f\left(a\right)g'\left(x\right) -g\left(a\right)f'\left(x\right)}{g'\left(x\right)-f'\left(x\right)} = 4 (By L? limxakg(x)kf(x)g(x)f(x)=4k=4\displaystyle \lim_{x \to a} \frac{k g'\left(x\right) -kf'\left(x\right)}{g'\left(x\right)-f'\left(x\right)} =4 \therefore k = 4