Solveeit Logo

Question

Question: Let f : [–π/3, 2π/3] → [0,4] be a function defined as f(x) =\(\sqrt{3}\)sin x – cos x + 2. Then f <...

Let f : [–π/3, 2π/3] → [0,4] be a function defined as f(x)

=3\sqrt{3}sin x – cos x + 2. Then f -1(x) is given by

A

sin-1(x22)π6\left( \frac{x - 2}{2} \right) - \frac{\pi}{6}

B

sin-1(x22)+π6\left( \frac{x - 2}{2} \right) + \frac{\pi}{6}

C

2π3\frac{2\pi}{3} + cos-1(x22)\left( \frac{x - 2}{2} \right)

D

None of these

Answer

sin-1(x22)+π6\left( \frac{x - 2}{2} \right) + \frac{\pi}{6}

Explanation

Solution

f(x) = 3\sqrt{3} sin x – cos x + 2 = 2 sin (xπ6)\left( x - \frac{\pi}{6} \right) + 2.

Since f(x) is one-one and onto, f is invertible.

Now fof -1(x) = x

⇒ 2 sin (f1(x)π6)\left( f^{- 1}(x) - \frac{\pi}{6} \right) + 2 = x ⇒ sin (f1(x)π6)\left( f^{- 1}(x) - \frac{\pi}{6} \right) = x2\frac{x}{2} – 1 ⇒ f–1(x) = sin–1(x21)+π6\left( \frac{x}{2} - 1 \right) + \frac{\pi}{6}, because x21\left| \frac{x}{2} - 1 \right| ≤ 1 for all x ∈ [0, 4]