Solveeit Logo

Question

Question: Let $f:[-1,1]\rightarrow[\frac{\pi}{2},\frac{3\pi}{2}], f(x)=sin^{-1}x$ and $g:[-1,1]\rightarrow[0,\...

Let f:[1,1][π2,3π2],f(x)=sin1xf:[-1,1]\rightarrow[\frac{\pi}{2},\frac{3\pi}{2}], f(x)=sin^{-1}x and g:[1,1][0,π],g(x)=cos1xg:[-1,1]\rightarrow[0,\pi], g(x)=cos^{-1}x be two bijective functions. Inverse of bijective functions ff and gg are h:[π2,3π2][1,1],h(x)=sinxh:[\frac{\pi}{2},\frac{3\pi}{2}]\rightarrow[-1,1], h(x)=sinx and k:[0,π][1,1],k(x)=cosxk:[0,\pi]\rightarrow[-1,1], k(x)=cosx respectively. Then sin(sin1xcos1x)sin(sin^{-1}x-cos^{-1}x) is equal to

A

1

B

0

C

-1

D

cos(2sin1x)cos(2sin^{-1}x)

Answer

1

Explanation

Solution

Let A=sin1xA = \sin^{-1}x and B=cos1xB = \cos^{-1}x. According to the problem definition:

  1. A[π2,3π2]A \in [\frac{\pi}{2}, \frac{3\pi}{2}] such that sinA=x\sin A = x.
  2. B[0,π]B \in [0, \pi] such that cosB=x\cos B = x.

From these, we have sinA=cosB\sin A = \cos B. We know that cosB=sin(π2B)\cos B = \sin(\frac{\pi}{2} - B). So, sinA=sin(π2B)\sin A = \sin(\frac{\pi}{2} - B).

This implies two possibilities for the relationship between AA and BB: (i) A=π2B+2nπA = \frac{\pi}{2} - B + 2n\pi for some integer nn. (ii) A=π(π2B)+2nπ=π2+B+2nπA = \pi - (\frac{\pi}{2} - B) + 2n\pi = \frac{\pi}{2} + B + 2n\pi for some integer nn.

Let's analyze the ranges of AA and BB for any x[1,1]x \in [-1, 1]:

  • If x[0,1]x \in [0, 1]: A[π2,π]A \in [\frac{\pi}{2}, \pi] (since sinA0\sin A \ge 0 in this range). B[0,π2]B \in [0, \frac{\pi}{2}] (since cosB0\cos B \ge 0 in this range). For case (i): A=π2B+2nπA = \frac{\pi}{2} - B + 2n\pi. Since B[0,π2]B \in [0, \frac{\pi}{2}], π2B[0,π2]\frac{\pi}{2} - B \in [0, \frac{\pi}{2}]. For A[π2,π]A \in [\frac{\pi}{2}, \pi], this implies A=π2A = \frac{\pi}{2} and π2B=π2\frac{\pi}{2}-B = \frac{\pi}{2}, so B=0B=0. This occurs when x=1x=1. In this specific case, AB=π20=π2A-B = \frac{\pi}{2}-0 = \frac{\pi}{2}. For case (ii): A=π2+B+2nπA = \frac{\pi}{2} + B + 2n\pi. Since B[0,π2]B \in [0, \frac{\pi}{2}], π2+B[π2,π]\frac{\pi}{2} + B \in [\frac{\pi}{2}, \pi]. This range matches A[π2,π]A \in [\frac{\pi}{2}, \pi]. So, taking n=0n=0, we have A=π2+BA = \frac{\pi}{2} + B. This gives AB=π2A-B = \frac{\pi}{2}.

  • If x[1,0)x \in [-1, 0): A(π,3π2]A \in (\pi, \frac{3\pi}{2}] (since sinA<0\sin A < 0 in this range). B(π2,π]B \in (\frac{\pi}{2}, \pi] (since cosB<0\cos B < 0 in this range). For case (i): A=π2B+2nπA = \frac{\pi}{2} - B + 2n\pi. Since B(π2,π]B \in (\frac{\pi}{2}, \pi], π2B[π2,0)\frac{\pi}{2} - B \in [-\frac{\pi}{2}, 0). This range does not match A(π,3π2]A \in (\pi, \frac{3\pi}{2}] for n=0n=0. If n=1n=1, A=5π2BA = \frac{5\pi}{2}-B, then A[3π2,2π)A \in [\frac{3\pi}{2}, 2\pi). This only matches A=3π2A=\frac{3\pi}{2} when B=πB=\pi, which occurs when x=1x=-1. In this specific case, AB=3π2π=π2A-B = \frac{3\pi}{2}-\pi = \frac{\pi}{2}. For case (ii): A=π2+B+2nπA = \frac{\pi}{2} + B + 2n\pi. Since B(π2,π]B \in (\frac{\pi}{2}, \pi], π2+B(π,3π2]\frac{\pi}{2} + B \in (\pi, \frac{3\pi}{2}]. This range matches A(π,3π2]A \in (\pi, \frac{3\pi}{2}]. So, taking n=0n=0, we have A=π2+BA = \frac{\pi}{2} + B. This gives AB=π2A-B = \frac{\pi}{2}.

In all valid cases for x[1,1]x \in [-1, 1], we consistently find that AB=π2A - B = \frac{\pi}{2}. Therefore, sin(sin1xcos1x)=sin(AB)=sin(π2)=1\sin(\sin^{-1}x - \cos^{-1}x) = \sin(A-B) = \sin(\frac{\pi}{2}) = 1.