Question
Question: Let $f:[-1,1]\rightarrow[\frac{\pi}{2},\frac{3\pi}{2}], f(x)=sin^{-1}x$ and $g:[-1,1]\rightarrow[0,\...
Let f:[−1,1]→[2π,23π],f(x)=sin−1x and g:[−1,1]→[0,π],g(x)=cos−1x be two bijective functions. Inverse of bijective functions f and g are h:[2π,23π]→[−1,1],h(x)=sinx and k:[0,π]→[−1,1],k(x)=cosx respectively. Then sin(sin−1x−cos−1x) is equal to

1
0
-1
cos(2sin−1x)
1
Solution
Let A=sin−1x and B=cos−1x. According to the problem definition:
- A∈[2π,23π] such that sinA=x.
- B∈[0,π] such that cosB=x.
From these, we have sinA=cosB. We know that cosB=sin(2π−B). So, sinA=sin(2π−B).
This implies two possibilities for the relationship between A and B: (i) A=2π−B+2nπ for some integer n. (ii) A=π−(2π−B)+2nπ=2π+B+2nπ for some integer n.
Let's analyze the ranges of A and B for any x∈[−1,1]:
-
If x∈[0,1]: A∈[2π,π] (since sinA≥0 in this range). B∈[0,2π] (since cosB≥0 in this range). For case (i): A=2π−B+2nπ. Since B∈[0,2π], 2π−B∈[0,2π]. For A∈[2π,π], this implies A=2π and 2π−B=2π, so B=0. This occurs when x=1. In this specific case, A−B=2π−0=2π. For case (ii): A=2π+B+2nπ. Since B∈[0,2π], 2π+B∈[2π,π]. This range matches A∈[2π,π]. So, taking n=0, we have A=2π+B. This gives A−B=2π.
-
If x∈[−1,0): A∈(π,23π] (since sinA<0 in this range). B∈(2π,π] (since cosB<0 in this range). For case (i): A=2π−B+2nπ. Since B∈(2π,π], 2π−B∈[−2π,0). This range does not match A∈(π,23π] for n=0. If n=1, A=25π−B, then A∈[23π,2π). This only matches A=23π when B=π, which occurs when x=−1. In this specific case, A−B=23π−π=2π. For case (ii): A=2π+B+2nπ. Since B∈(2π,π], 2π+B∈(π,23π]. This range matches A∈(π,23π]. So, taking n=0, we have A=2π+B. This gives A−B=2π.
In all valid cases for x∈[−1,1], we consistently find that A−B=2π. Therefore, sin(sin−1x−cos−1x)=sin(A−B)=sin(2π)=1.