Question
Mathematics Question on Functions
Let f:(−1,1)→ R be such that f(cos4θ)=2−sec2θ2 for θ∈(0,4π)∪(4π,2π). Then, the value(s) of f(31) is are
A
1−23
B
1+23
C
1−32
D
1+32
Answer
1+23
Explanation
Solution
f(cos 4\theta)=\frac{2}{2-sec^2 \theta}\hspace15mm ...(i) At \hspace15mm cos4\theta=\frac{1}{3} \Rightarrow 2 cos^2 \theta-1=\frac{1}{3} \Rightarrow \hspace15mm cos^22\theta=\frac{2}{3}\Rightarrow cos 2\theta=\pm\sqrt{\frac{2}{3}}\hspace15mm ...(ii) \therefore \hspace15mm f(cos4\theta)=\frac{2.cos^2 \theta}{2 cos^2 \theta-1}= frac{1+cos^\theta}{cos 2\theta} \Rightarrow \hspace15mm f\Big(\frac{1}{3}\Big)=1\pm\sqrt{\frac{3}{2}}\hspace15mm [from E(ii)]