Question
Question: Let \({{f}_{1}}\text{ }:\text{ }R\text{ }\to R,{{f}_{2}}\text{ }:\left( -\pi /2,\pi /2 \right)\to R,...
Let f1 : R →R,f2 :(−π/2,π/2)→R, f2 : (−1, e2π−2)→R and
f4 : R→ R be functions defined by
(i) ${{f}_{1}}(x)=\sin (\sqrt{1-{{e}^{-{{x}^{2}}}}})$$$$$
(ii) ${{f}_{2}}\left( x \right)=\left\\{ \begin{matrix}
\dfrac{\left| \sin x \right|}{{{\tan }^{-1}}x},\text{if }x\ne 0, \\\
1,\text{if }x=0 \\\
\end{matrix} \right.$ where the inverse trigonometric function ${{\tan }^{-1}}x$ assumes values $\left( -\pi /2,\pi /2 \right)$ .
(iii) f3(x)=[sin(loge(x + 2))] where, for t∈ R, [t] denotes the greatest integer less than or equal to is t$$$$
(iv) {{f}_{4}}\left( x \right)=\left\\{ \begin{matrix}
{{x}^{2}}\sin \left( \dfrac{1}{x} \right) & ,x\ne 0 \\\
0 & ,x=0 \\\
\end{matrix} \right.$$$$$
List-I
P. The function {{f}{1}}
Q. The function ${{f}_{2}}
R. The function {{f}_{3}}$$$$$
S. The function {{f}{4}}
List-II:$$$$
1\. NOT continuous at $x=0
2. Continuous at x=0 and NOT differentiable at x=0
3. Differentiable at x=0 and its derivative is NOT continuous at x=0.
4\. Differentiable at $x=0$ its derivative is continuous at $x=0$.
Choose the correct option:$$$$
A.P\to 2,Q\to 3,R\to 1,S\to 4$$$$$
B. P\to 4,Q\to 1,R\to 2,S\to 3
C. $P\to 4,Q\to 2,R\to 1,S\to 3
D. P→2,Q→1,R→4,S→3$$$$
Solution
Use the definition of continuity and differentiability at any point on the basis of limits. Calculate the left hand limit, the right hand limit , the left hand derivative and right hand derivative of all the functions to reach the correct result.$$$$
Complete step-by-step answer:
We know that if a function f(x) is continuous at any point x=a then if and only if Left hand limit(LHL)= right hand limit(RHL)=the value of the function at x=a. In symbols,