Solveeit Logo

Question

Mathematics Question on Methods of Integration

Let f:[1,∞) \rightarrow R be a differentiable function such that f(1) = 13\frac{1}{3} and 31x\int_{1}^{x}f(t)dt=xf(x)-x33\frac{x^3}{3},x∈[1,∞). Let e denote the base of the natural logarithm. Then the value of f(e) is

A

e2+43\frac{4}{3}

B

loge4+e3\frac{e}{3}

C

4e23\frac{4e^2}{3}

D

e2-43^{\frac{4}{3}}

Answer

4e23\frac{4e^2}{3}

Explanation

Solution

The correct option is (C) : 4e23\frac{4e^2}{3}