Solveeit Logo

Question

Mathematics Question on Functions

Let f:(1,)Rf :(-1, \infty) \rightarrow R be defined by f(0)=1f (0)=1 and f(x)=1xloge(1+x),x0.f ( x )=\frac{1}{ x } \log _{ e }(1+ x ), x \neq 0 . Then the function ff

A

decreases in (1,)(-1, \infty)

B

decreases in (-1,0) and increases in (0,)(0, \infty)

C

increases in (1,)(-1, \infty)

D

increases in (-1,0) and decreases in (0,)(0, \infty)

Answer

decreases in (1,)(-1, \infty)

Explanation

Solution

f(x)=x1+xn(1+x)x2f'(x)=\frac{\frac{x}{1+x}-\ell n(1+x)}{x^{2}} =x(1+x)n(1+x)x2(1+x)=\frac{x-(1+x) \ell n(1+x)}{x^{2}(1+x)} Suppose h(x)=x(1+x)n(1+x)h(x)=x-(1+x) \ell n(1+x) h(x)=1n(1+x)1=ln(1+x)\Rightarrow h'(x)=1-\ell n(1+x)-1=-\ln (1+x) h(x)>0,x(1,0)h ^{\prime}( x )>0, \forall x \in(-1,0) h(x)<0,x(0,)h'( x )<0, \forall x \in(0, \infty) h(0)=0h(x)<0x(1,)h (0)=0 \Rightarrow h'( x )<0 \forall x \in(-1, \infty) f(x)<0x(1,)\Rightarrow f'( x )<0 \forall x \in(-1, \infty) f(x)\Rightarrow f ( x ) is a decreasing function for all x(1,)x \in(-1, \infty)