Solveeit Logo

Question

Mathematics Question on Definite Integral

Let f1:(0,)Rf_{1}:(0, \infty) \rightarrow R and f2:(0,)Rf_{2}:(0, \infty) \rightarrow R be defined by
f1(x)=0xj=121(tj)jdt,f_{1}(x)=\int\limits_{0}^{x} \displaystyle\prod_{j=1}^{21}(t-j)^{j} d t, x>>0
and f2(x)=98(x1)50600(x1)49+2450,x>0f _{2}( x )=98( x -1)^{50}-600( x -1)^{49}+2450, x >0,
where, for any positive integer nn and real numbers a1,a2a _{1}, a _{2}, ,an,i=1nai\ldots , a_{n}, \displaystyle\prod_{i=1}^{n} a_{i} denotes the product of a1,a2,,ana_{1}, a_{2}, \ldots , a_{n} . Let mim_{i} and nin_{i}, respectively, denote the number of points of local minima and the number of points of local maxima of function fi,i=1,2f _{ i }, i =1,2, in the interval (0(0, \infty )