Solveeit Logo

Question

Question: Let $f: [0,4] \rightarrow \mathbb{R}$ be a differentiable function. Choose the correct option(s) fro...

Let f:[0,4]Rf: [0,4] \rightarrow \mathbb{R} be a differentiable function. Choose the correct option(s) from the following:

A

For a,b(0,4)a, b \in (0,4), (f(4))2(f(0))2=8f(a)f(b)(f(4))^2 - (f(0))^2 = 8f'(a)f(b)

B

04f(t)dt=2[αf(α2)+βf(β2)]0<α,β<2\int_{0}^{4} f(t) dt = 2 \left[ \alpha f(\alpha^2) + \beta f(\beta^2) \right] \quad \forall 0 < \alpha, \beta < 2

C

04f(t)dt=3[αf(α2)+βf(β2)]0<α,β<2\int_{0}^{4} f(t) dt = 3 \left[ \alpha f(\alpha^2) + \beta f(\beta^2) \right] \quad \forall 0 < \alpha, \beta < 2

D

204f(t)dt=[αf(α2)+βf(β2)]0<α,β<22 \int_{0}^{4} f(t) dt = \left[ \alpha f(\alpha^2) + \beta f(\beta^2) \right] \quad \forall 0 < \alpha, \beta < 2

Answer

(a)

Explanation

Solution

Option (a):

By the Mean Value Theorem applied to g(x)=(f(x))2g(x) = (f(x))^2 on the interval [0,4][0,4], there exists c(0,4)c \in (0,4) such that:

g(4)g(0)=g(c)(40)g(4) - g(0) = g'(c)(4-0)

(f(4))2(f(0))2=4g(c)(f(4))^2 - (f(0))^2 = 4 g'(c)

Since g(x)=2f(x)f(x)g'(x) = 2f(x)f'(x), we have:

(f(4))2(f(0))2=4[2f(c)f(c)]=8f(c)f(c)(f(4))^2 - (f(0))^2 = 4 [2f(c)f'(c)] = 8f(c)f'(c).

Thus, there exists c(0,4)c \in (0,4) such that (f(4))2(f(0))2=8f(c)f(c)(f(4))^2 - (f(0))^2 = 8f(c)f'(c). Option (a) states that there exist a,b(0,4)a, b \in (0,4) such that (f(4))2(f(0))2=8f(a)f(b)(f(4))^2 - (f(0))^2 = 8f'(a)f(b). This is equivalent to saying that for any differentiable function ff on [0,4][0,4], there exist a,b(0,4)a, b \in (0,4) such that f(c)f(c)=f(a)f(b)f(c)f'(c) = f'(a)f(b) for some c(0,4)c \in (0,4) given by the MVT.

Let RfR_f be the range of ff on (0,4)(0,4) and RfR_{f'} be the range of ff' on (0,4)(0,4). Since ff and ff' are continuous on [0,4][0,4], they are continuous on (0,4)(0,4). By the Intermediate Value Theorem, RfR_f and RfR_{f'} are intervals (or single points).

The range of the function G(a,b)=f(a)f(b)G(a,b) = f'(a)f(b) for a,b(0,4)a, b \in (0,4) is the set of products {xyxRf,yRf}\{xy \mid x \in R_{f'}, y \in R_f\}. This set is also an interval (or single point).

We have f(ξ)f(ξ)f'(\xi)f(\xi), where ξ(0,4)\xi \in (0,4). So f(ξ)Rff'(\xi) \in R_{f'} and f(ξ)Rff(\xi) \in R_f.

The product f(ξ)f(ξ)f'(\xi)f(\xi) is a product of a value from RfR_{f'} and a value from RfR_f. This product must be in the set {xyxRf,yRf}\{xy \mid x \in R_{f'}, y \in R_f\}, which is the range of f(a)f(b)f'(a)f(b) for a,b(0,4)a, b \in (0,4).

Therefore, there exist a,b(0,4)a, b \in (0,4) such that f(a)f(b)=f(ξ)f(ξ)f'(a)f(b) = f'(\xi)f(\xi).

Options (b), (c), and (d):

These options are false. Consider f(t)=1f(t) = 1. Then 04f(t)dt=041dt=4\int_0^4 f(t) dt = \int_0^4 1 dt = 4.

  • (b) 4=2[α+β]4 = 2[\alpha + \beta] for all 0<α,β<20 < \alpha, \beta < 2. This implies α+β=2\alpha + \beta = 2 for all 0<α,β<20 < \alpha, \beta < 2, which is false (e.g., α=0.1,β=0.1\alpha = 0.1, \beta = 0.1).
  • (c) 4=3[α+β]4 = 3[\alpha + \beta] for all 0<α,β<20 < \alpha, \beta < 2. This implies α+β=43\alpha + \beta = \frac{4}{3} for all 0<α,β<20 < \alpha, \beta < 2, which is false.
  • (d) 2(4)=α+β2(4) = \alpha + \beta for all 0<α,β<20 < \alpha, \beta < 2. This implies α+β=8\alpha + \beta = 8 for all 0<α,β<20 < \alpha, \beta < 2, which is false.

Therefore, only option (a) is correct.