Solveeit Logo

Question

Mathematics Question on Continuity

Let f:[0,2]Rf : [0,2] \rightarrow R be a function which is continuous on [0,2][0,2] and is differentiable on (0,2)(0,2) with f(0)=1f(0) = 1. Let F(x)=0x2f(t)dt,F(x)= \int\limits_0^{x^2} \, f(\sqrt t)dt, \, for x[0,2],ifF(x)=f(x),\, x \in \, [0,2], if F'(x) \, = f'(x) , \forall x(0,2),x \in \, (0,2) ,\, then F(2)\, F(2) equals

A

e21e^2 -1

B

e41e^4 -1

C

e-1

D

e4e^4

Answer

e41e^4 -1

Explanation

Solution

F(0)=0F (0)=0
F(x)=2xf(x)=f(x)F ^{\prime}( x )=2 x f ( x )= f ( x )
f(x)=ex2+cf ( x )= e ^{ x ^{2}+ c }
f(x)=ex2(f(0)=1)f ( x )= e ^{ x ^{2}}(\because f (0)=1)
F(x)=0x2exdxF ( x )=\int\limits_{0}^{ x ^{2}} e ^{ x } d x
F(x)=ex21(F(0)=0)F ( x )= e ^{ x ^{2}}-1(\because F (0)=0)
F(2)=e41\Rightarrow F (2)= e ^{4}-1

Therefore, the correct option is (B): e41e^4 -1