Solveeit Logo

Question

Mathematics Question on limits and derivatives

Let f:[0,1]\rightarrowR be a function. suppose the function f is twice differentiable,f(0)=0=f(1) and satisfies f''(x)-2f'(x)+f(x)\geqex,x\in[0,1], which of the following is true?

A

0<f(x)<\infty

B

12<f(x)<12-\frac{1}{2}<f(x)<\frac{1}{2}

C

14<f(x)<1-\frac{1}{4}<f(x)<1

D

<f(x)<0-\infty<f(x)<0

Answer

<f(x)<0-\infty<f(x)<0

Explanation

Solution

The correct answer is option (D) : <f(x)<0-\infty<f(x)<0