Solveeit Logo

Question

Mathematics Question on Methods of Integration

Let f : (0,1) → R be the function defined as f(x) = √n if x ∈ [1n+1,1n\frac{1}{n+1},\frac{1}{n}] where n ∈ N. Let g : (0,1) → R be a function such that x2x1ttdt<g(x)<2x\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt<g(x)<2\sqrt x for all x ∈ (0,1).
Then limx0f(x)g(x)\lim_{x\rightarrow0}f(x)g(x)

A

does NOT exist

B

is equal to 1

C

is equal to 2

D

is equal to 3

Answer

is equal to 2

Explanation

Solution

The correct option is (C).
f(x)=1x1f(x)=\sqrt{\frac{1}{x}-1}
limx0+x2x1ttdt1x1×2x\lim_{x\rightarrow 0^+}\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt\sqrt{\frac{1}{x}-1}\times2\sqrt x
=limx0+2x(1x1x)=2=\lim_{x\rightarrow 0^+}2\sqrt{x(\frac{1}{x}-{\frac{1}{x}})}=2
limx0+2x(1x)=2;(1xZ)\lim_{x\rightarrow 0^+}2\sqrt {x(\frac{1}{x})}=2;(\frac{1}{x}\notin Z)
limx0+x2x1ttdt.1x1x=x2x1ttdt1x(1x)\lim_{x\rightarrow0^+}\int_{x^2}^{x}\sqrt{\frac{1-t}{t}}dt.\sqrt{\frac{1}{x}-\frac{1}{x}}=\int_{x^2}^{x}\frac{1-t}{t}dt\sqrt{1-x}(\frac{1}{x})
limx21x.4x.1x2=2\lim_{x\rightarrow}2\sqrt{1-x}.4\sqrt{x}.\sqrt{1-x^2}=2
similarly for 1xZ\frac{1}{x}\in Z is equal to 2.