Solveeit Logo

Question

Mathematics Question on Relations and functions

Let f :[0,1] → [0,1] be the function defined by x33x2+59x+1736.\frac{x^3}{3}-x^2+\frac{5}{9}x+\frac{17}{36}. Consider the square region S = [0,1] x [0,1]. Let G = {(x,y) ∈ S: y > f(s)} be called the green region and R = {(x,y) ∈ S: y < f(s)} be called the red region. Let Lh = {(x,h) ∈ S: x ∈ [0,1] be the horizontal line drawn at a height h ∈ [0,1]. Then which of the following statements is(are) true?

A

There exists an h ∈ [14,23\frac{1}{4},\frac{2}{3}] such that the area of the green region above the line Lh equals the area of the green region below the line Lh

B

There exists an h ∈ [14,23\frac{1}{4},\frac{2}{3}] such that the area of the red region above the line Lh equals the area of the red region below the line Lh

C

There exists an h ∈ [14,23\frac{1}{4},\frac{2}{3}] such that the area of the green region above the line Lh equals the area of the red region below the line Lh

D

There exists an h ∈ [14,23\frac{1}{4},\frac{2}{3}] such that the area of the red region above the line Lh equals the area of the green region below the line Lh

Answer

There exists an h ∈ [14,23\frac{1}{4},\frac{2}{3}] such that the area of the red region above the line Lh equals the area of the red region below the line Lh

Explanation

Solution

the square region
f(x)=x33x2+59x+1736,f(x)=x22x+59f(x)=\frac{x^3}{3}-x^2+\frac{5}{9}x+\frac{17}{36},f'(x)=x^2-2x+\frac{5}{9}
For maxima or minima, f(x)=0x=13f'(x)=0\Rightarrow x=\frac{1}{3}
AR=01f(x)dx=12AG=12A_R = \int_{0}^{1}f(x)dx=\frac{1}{2}\Rightarrow A_G=\frac{1}{2}
Now, checking each options :
(A) 1 - h = h - 12\frac{1}{2}
h=34,34>23h=\frac{3}{4},\frac{3}{4}\gt\frac{2}{3} So, the option (A) is incorrect
(B) h = 12h\frac{1}{2}-h
⇒ h = 14\frac{1}{4} So, the option (B) is correct
(C) 01f(x)dx=12,0112dx=12\int^1_0f(x)dx=\frac{1}{2},\int_0^1\frac{1}{2}dx=\frac{1}{2}
01(f(x)12)dx=0\int_0^1(f(x)-\frac{1}{2})dx=0
h=12h=\frac{1}{2} So, the option (B) is correct.
(D) As the option (C) is correct, the option (D) is also correct.
So, the correct options are (B), (C) and (D).