Question
Mathematics Question on Continuity and differentiability
Let f:(0,π)→R be a function given by
f(x)=⎩⎨⎧(78)tan8x/tan7x, a−8, (1+∣cotx∣)b⌊tanx⌋,0<x<2πx=2π2π<x<π
Where a,b∈Z. If f is continuous at x=2π, then a2+b2 is equal to __________.
Answer
Left-Hand Limit (LHL) at x=2π
The left-hand limit is:
limx→2π−(78)tantan7x8x.
As x→2π−, both tan8x→∞ and tan7x→∞, so:
tan7xtan8x→78.
Thus:
limx→2π−(78)tan7xtan8x=(78)0=1.
Right-Hand Limit (RHL) at x=2π
The right-hand limit is:
limx→2π+(1+∣cotx∣)abtan∣x∣.
As x→2π+, cotx→0 and tan∣x∣→∞. This simplifies to:
limx→2π+(1+∣cotx∣)abtan∣x∣=eab.
Continuity Condition For f(x) to be continuous at x=2π:
LHL=f(2π)=RHL.
Substitute:
1=a−8=eab.
From a−8=1:
a=9.
Substitute a=9 into eab=eab, giving:
e9b=1⟹9b=0⟹b=0.
Final Calculation
a2+b2=92+02=81.
Final Answer is : 81.