Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

Let f:(0,π)Rf: (0, \pi) \to \mathbb{R} be a function given by
f(x)={(87)tan8x/tan7x,0<x<π2 a8,x=π2 (1+cotx)btanx,π2<x<πf(x) = \begin{cases} \left(\frac{8}{7}\right)^{\tan 8x / \tan 7x}, & 0 < x < \frac{\pi}{2} \\\ a - 8, & x = \frac{\pi}{2} \\\ \left(1 + |\cot x|\right)^{b^{\lfloor \tan x \rfloor}}, & \frac{\pi}{2} < x < \pi \end{cases}
Where a,bZa, b \in \mathbb{Z}. If ff is continuous at x=π2x = \frac{\pi}{2}, then a2+b2a^2 + b^2 is equal to __________.

Answer

Left-Hand Limit (LHL) at x=π2x = \frac{\pi}{2}

The left-hand limit is:

limxπ2(87)tan8xtan7x.\lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\tan \frac{8x}{\tan 7x}}.

As xπ2x \to \frac{\pi}{2}^-, both tan8x\tan 8x \to \infty and tan7x\tan 7x \to \infty, so:

tan8xtan7x87.\frac{\tan 8x}{\tan 7x} \to \frac{8}{7}.

Thus:

limxπ2(87)tan8xtan7x=(87)0=1.\lim_{x \to \frac{\pi}{2}^-} \left( \frac{8}{7} \right)^{\frac{\tan 8x}{\tan 7x}} = \left( \frac{8}{7} \right)^0 = 1.

Right-Hand Limit (RHL) at x=π2x = \frac{\pi}{2}

The right-hand limit is:

limxπ2+(1+cotx)btanxa.\lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}}.

As xπ2+x \to \frac{\pi}{2}^+, cotx0\cot x \to 0 and tanx\tan \lvert x \rvert \to \infty. This simplifies to:

limxπ2+(1+cotx)btanxa=bea.\lim_{x \to \frac{\pi}{2}^+} \left( 1 + \lvert \cot x \rvert \right)^{\frac{b \tan \lvert x \rvert}{a}} = \frac{b}{e^a}.

Continuity Condition For f(x)f(x) to be continuous at x=π2x = \frac{\pi}{2}:

LHL=f(π2)=RHL.LHL = f\left( \frac{\pi}{2} \right) = RHL.

Substitute:

1=a8=bea.1 = a - 8 = \frac{b}{e^a}.

From a8=1a - 8 = 1:

a=9.a = 9.

Substitute a=9a = 9 into bea=eba\frac{b}{e^a} = e^{\frac{b}{a}}, giving:

eb9=1    b9=0    b=0.e^{\frac{b}{9}} = 1 \implies \frac{b}{9} = 0 \implies b = 0.

Final Calculation

a2+b2=92+02=81.a^2 + b^2 = 9^2 + 0^2 = 81.

Final Answer is : 81.