Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

Let f:(0,)Rf:(0, \infty) \rightarrow R be given by f(x)=1/xxe(t+1t)dttf(x)=\int\limits_{1 / x}^{x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}, then

A

f(x)f(x) is monotonically increasing on [1,[1, \infty )

B

f(x)f(x) is monotonically decreasing on (0,1)(0,1)

C

f(x)+f(1x)=0f(x)+f\left(\frac{1}{x}\right)=0, for all x(0,)x \in(0, \infty)

D

f(2x)f\left(2^{x}\right) is an odd function of xx on RR.

Answer

f(2x)f\left(2^{x}\right) is an odd function of xx on RR.

Explanation

Solution

Given that

f(x)=1/xxe(t+1t)dtf\left(x\right)=\int\limits_{1/x}^{x} e^{-(t+\frac{1}{t})} d t

ddxf(x)=ex+1xxdxdxe(1x+x)1/xxd1xdx \frac{d}{dx}f(x) = \frac{e^{-x+\frac{1}{x}}}{x}\frac{dx}{dx}-\frac{e^{-(\frac1 x+x)}}{1/x}x \frac{d \frac{1}{x}}{dx}

= e(x+1x)x+xe(x+1x)x1x2\frac{e^{-(x+\frac{1}{x})}}{x} + xe^{-(x+\frac{1}{x})}x\frac{-1}{x^2}

= e(x+1x)+1xe(x+1x)e^{-(x+\frac{1}{x})} + \frac{1}{x}e^{-(x+\frac{1}{x})}

= 2e(x+1x)=02e^{-(x+\frac{1}{x})}= 0

Hence, f(x)+$$f(\frac{1}{x}) =

\int\limits_{1/x}^{x} \frac{e^{-(t+\frac{1}{t}})} {t}dt+\int\limits_{x}^{1/x} \frac{e^{-(t+\frac{1}{t}})}{t} d t$$$$\int\limits_{1/x}^{1/x} \frac{e^{-(t+\frac{1}{t})}}{t} d t=0

Now,

f(2x)+f(12x)=f(2x)+f(2x)=0f(2^x)+f(\frac{1}{2^x})=f(2^x)+f(2^x)=0

Therefore, f(2x)f(2^x) is an odd function.

Note, Let 2x= μ

log2μ =x

∴ f(2x) = h(x) an odd function

Then h(-x)