Question
Mathematics Question on Derivatives of Functions in Parametric Forms
Let f:(0,∞)→R be given by f(x)=1/x∫xe−(t+t1)tdt, then
A
f(x) is monotonically increasing on [1,∞ )
B
f(x) is monotonically decreasing on (0,1)
C
f(x)+f(x1)=0, for all x∈(0,∞)
D
f(2x) is an odd function of x on R.
Answer
f(2x) is an odd function of x on R.
Explanation
Solution
Given that
f(x)=1/x∫xe−(t+t1)dt
⇒dxdf(x)=xe−x+x1dxdx−1/xe−(x1+x)xdxdx1
= xe−(x+x1)+xe−(x+x1)xx2−1
= e−(x+x1)+x1e−(x+x1)
= 2e−(x+x1)=0
Hence, f(x)+$$f(\frac{1}{x}) =
\int\limits_{1/x}^{x} \frac{e^{-(t+\frac{1}{t}})} {t}dt+\int\limits_{x}^{1/x} \frac{e^{-(t+\frac{1}{t}})}{t} d t$$$$\int\limits_{1/x}^{1/x} \frac{e^{-(t+\frac{1}{t})}}{t} d t=0
Now,
f(2x)+f(2x1)=f(2x)+f(2x)=0
Therefore, f(2x) is an odd function.
Note, Let 2x= μ
log2μ =x
∴ f(2x) = h(x) an odd function
Then h(-x)