Solveeit Logo

Question

Question: Let $f: [0, 4\pi] \rightarrow [0, \pi], f(x) = \cos^{-1}(\cos x)$ then find number of solutions in $...

Let f:[0,4π][0,π],f(x)=cos1(cosx)f: [0, 4\pi] \rightarrow [0, \pi], f(x) = \cos^{-1}(\cos x) then find number of solutions in x[0,4π]x \in [0, 4\pi] satisfying the equation f(x)=10x10f(x) = \frac{10 - x}{10}.

Answer

3

Explanation

Solution

The function f(x)=cos1(cosx)f(x) = \cos^{-1}(\cos x) is defined piecewise on [0,4π][0, 4\pi] as:

f(x)=xf(x) = x for x[0,π]x \in [0, \pi]

f(x)=2πxf(x) = 2\pi - x for x[π,2π]x \in [\pi, 2\pi]

f(x)=x2πf(x) = x - 2\pi for x[2π,3π]x \in [2\pi, 3\pi]

f(x)=4πxf(x) = 4\pi - x for x[3π,4π]x \in [3\pi, 4\pi]

The equation to solve is f(x)=10x10f(x) = \frac{10 - x}{10}. Let g(x)=10x10=1x10g(x) = \frac{10 - x}{10} = 1 - \frac{x}{10}.

We need to find the number of solutions to f(x)=g(x)f(x) = g(x) in the interval [0,4π][0, 4\pi].

Let's solve the equation in each interval:

Case 1: x[0,π]x \in [0, \pi]

f(x)=xf(x) = x. The equation is x=10x10x = \frac{10 - x}{10}.

10x=10x    11x=10    x=101110x = 10 - x \implies 11x = 10 \implies x = \frac{10}{11}.

Since 01011π0 \le \frac{10}{11} \le \pi (as 10110.909\frac{10}{11} \approx 0.909 and π3.14\pi \approx 3.14), this solution is in the interval.

Also, g(1011)=10101110=1011g(\frac{10}{11}) = \frac{10 - \frac{10}{11}}{10} = \frac{10}{11}, which is in the range [0,π][0, \pi] of f(x)f(x).

So, x1=1011x_1 = \frac{10}{11} is a solution.

Case 2: x(π,2π]x \in (\pi, 2\pi]

f(x)=2πxf(x) = 2\pi - x. The equation is 2πx=10x102\pi - x = \frac{10 - x}{10}.

10(2πx)=10x    20π10x=10x    9x=20π10    x=20π10910(2\pi - x) = 10 - x \implies 20\pi - 10x = 10 - x \implies 9x = 20\pi - 10 \implies x = \frac{20\pi - 10}{9}.

Let's check if this solution is in (π,2π](\pi, 2\pi].

π<20π1092π\pi < \frac{20\pi - 10}{9} \le 2\pi

9π<20π1018π9\pi < 20\pi - 10 \le 18\pi

10<11π10 < 11\pi (which is true, 10<11×3.14=34.5410 < 11 \times 3.14 = 34.54)

2π102\pi \le 10 (which is false, 2π6.28102\pi \approx 6.28 \le 10)

20π1018π    2π1020\pi - 10 \le 18\pi \implies 2\pi \le 10. This is false.

Let's recheck the inequality: x=20π109x = \frac{20\pi - 10}{9}.

Is x>πx > \pi? 20π109>π    20π10>9π    11π>10\frac{20\pi - 10}{9} > \pi \implies 20\pi - 10 > 9\pi \implies 11\pi > 10, which is true.

Is x2πx \le 2\pi? 20π1092π    20π1018π    2π10\frac{20\pi - 10}{9} \le 2\pi \implies 20\pi - 10 \le 18\pi \implies 2\pi \le 10, which is true.

So x=20π109x = \frac{20\pi - 10}{9} is in (π,2π](\pi, 2\pi].

Let's check the value of g(x)g(x) at this point: g(20π109)=1020π10910=90(20π10)90=10020π90=102π9g(\frac{20\pi - 10}{9}) = \frac{10 - \frac{20\pi - 10}{9}}{10} = \frac{90 - (20\pi - 10)}{90} = \frac{100 - 20\pi}{90} = \frac{10 - 2\pi}{9}.

Is 102π9[0,π]\frac{10 - 2\pi}{9} \in [0, \pi]?

0102π9π0 \le \frac{10 - 2\pi}{9} \le \pi

0102π9π0 \le 10 - 2\pi \le 9\pi

102π10 \ge 2\pi (True, 106.2810 \ge 6.28)

1011π10 \le 11\pi (True, 1034.5410 \le 34.54)

So the value of g(x)g(x) is in the range [0,1][0, 1] which is within [0,π][0, \pi].

Thus, x2=20π109x_2 = \frac{20\pi - 10}{9} is a solution.

Case 3: x(2π,3π]x \in (2\pi, 3\pi]

f(x)=x2πf(x) = x - 2\pi. The equation is x2π=10x10x - 2\pi = \frac{10 - x}{10}.

10(x2π)=10x    10x20π=10x    11x=10+20π    x=10+20π1110(x - 2\pi) = 10 - x \implies 10x - 20\pi = 10 - x \implies 11x = 10 + 20\pi \implies x = \frac{10 + 20\pi}{11}.

Let's check if this solution is in (2π,3π](2\pi, 3\pi].

2π<10+20π113π2\pi < \frac{10 + 20\pi}{11} \le 3\pi

22π<10+20π33π22\pi < 10 + 20\pi \le 33\pi

2π<102\pi < 10 (True, 6.28<106.28 < 10)

10+20π33π    1013π10 + 20\pi \le 33\pi \implies 10 \le 13\pi (True, 1013×3.14=40.8210 \le 13 \times 3.14 = 40.82)

So x=10+20π11x = \frac{10 + 20\pi}{11} is in (2π,3π](2\pi, 3\pi].

Let's check the value of g(x)g(x) at this point: g(10+20π11)=1010+20π1110=110(10+20π)110=10020π110=102π11g(\frac{10 + 20\pi}{11}) = \frac{10 - \frac{10 + 20\pi}{11}}{10} = \frac{110 - (10 + 20\pi)}{110} = \frac{100 - 20\pi}{110} = \frac{10 - 2\pi}{11}.

Is 102π11[0,π]\frac{10 - 2\pi}{11} \in [0, \pi]?

0102π11π0 \le \frac{10 - 2\pi}{11} \le \pi

0102π11π0 \le 10 - 2\pi \le 11\pi

102π10 \ge 2\pi (True)

1013π10 \le 13\pi (True)

So the value of g(x)g(x) is in the range [0,1][0, 1] which is within [0,π][0, \pi].

Thus, x3=10+20π11x_3 = \frac{10 + 20\pi}{11} is a solution.

Case 4: x(3π,4π]x \in (3\pi, 4\pi]

f(x)=4πxf(x) = 4\pi - x. The equation is 4πx=10x104\pi - x = \frac{10 - x}{10}.

10(4πx)=10x    40π10x=10x    9x=40π10    x=40π10910(4\pi - x) = 10 - x \implies 40\pi - 10x = 10 - x \implies 9x = 40\pi - 10 \implies x = \frac{40\pi - 10}{9}.

Let's check if this solution is in (3π,4π](3\pi, 4\pi].

3π<40π1094π3\pi < \frac{40\pi - 10}{9} \le 4\pi

27π<40π1036π27\pi < 40\pi - 10 \le 36\pi

10<13π10 < 13\pi (True)

4π104\pi \le 10 (False, 4π12.56>104\pi \approx 12.56 > 10)

So x=40π109x = \frac{40\pi - 10}{9} is not in the interval (3π,4π](3\pi, 4\pi].

We have found three solutions: x1=1011x_1 = \frac{10}{11}, x2=20π109x_2 = \frac{20\pi - 10}{9}, and x3=10+20π11x_3 = \frac{10 + 20\pi}{11}.

All these solutions lie in the interval [0,4π][0, 4\pi].

Therefore, the total number of solutions is 3.

The final answer is 3\boxed{3}.