Question
Question: Let f : [-4, 4] ~ {−π, 0, π} →R, such that f(x) = cot (sinx) + \(\left\lbrack \frac{x^{2}}{a} \right...
Let f : [-4, 4] ~ {−π, 0, π} →R, such that f(x) = cot (sinx) + [ax2], where [.] denotes the greatest integer function, is an odd function. Complete set of values of 'a' is
A
(-16, 16) ~ {0}
B
(-∞, -16) ∪ (16, ∞)
C
[-16, 16] ~ {0}
D
(-∞, -16) ∪ [16, ∞)
Answer
(-∞, -16) ∪ (16, ∞)
Explanation
Solution
For f(x) to be odd, should not depend upon the value of x.
Since x ∈ [-4, 4] ⇒ 0 ≤ x2 ≤16
⇒ [∣a∣x2] = 0 if |a|> 16
⇒ a ∈ (-∞, -16) ∪ (16, ∞)