Solveeit Logo

Question

Question: Let f : [-4, 4] ~ {−π, 0, π} →R, such that f(x) = cot (sinx) + \(\left\lbrack \frac{x^{2}}{a} \right...

Let f : [-4, 4] ~ {−π, 0, π} →R, such that f(x) = cot (sinx) + [x2a]\left\lbrack \frac{x^{2}}{a} \right\rbrack, where [.] denotes the greatest integer function, is an odd function. Complete set of values of 'a' is

A

(-16, 16) ~ {0}

B

(-∞, -16) ∪ (16, ∞)

C

[-16, 16] ~ {0}

D

(-∞, -16) ∪ [16, ∞)

Answer

(-∞, -16) ∪ (16, ∞)

Explanation

Solution

For f(x) to be odd, should not depend upon the value of x.

Since x ∈ [-4, 4] ⇒ 0 ≤ x2 ≤16

[x2a]\left[ \frac { x ^ { 2 } } { | a | } \right] = 0 if |a|> 16

⇒ a ∈ (-∞, -16) ∪ (16, ∞)