Question
Question: Let $f: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ be defined by $f(x) = \sin^{-1}x$ $g: [-...
Let f:[−1,1]→[−2π,2π] be defined by f(x)=sin−1x
g:[−1,1]→[0,π] be defined by g(x)=cos−1x
h:R→(−2π,2π) be defined by h(x)=tan−1x
Match each entry in List-l to the correct entries in List-II.
List-I | List-II |
---|---|
P) f(x)+g(x) | 1) 0 |
Q) f(x)+f(−x) | 2) 2π |
R) g(x)+g(−x) | 3) 2−π |
S) h(x)+h(−x) | 4) π |

A
P → 1, Q → 2, R → 3, S → 4
B
P → 2, Q → 1, R → 4, S → 1
C
P → 3, Q → 4, R → 1, S → 2
D
P → 4, Q → 3, R → 2, S → 1
Answer
P → 2, Q → 1, R → 4, S → 1
Explanation
Solution
P) f(x)+g(x):
Using the identity sin−1x+cos−1x=2π.
Q) f(x)+f(−x):
Using the property sin−1(−x)=−sin−1x.
R) g(x)+g(−x):
Using the property cos−1(−x)=π−cos−1x.
S) h(x)+h(−x):
Using the property tan−1(−x)=−tan−1x.
Therefore, the correct matching is: P → 2, Q → 1, R → 4, S → 1