Solveeit Logo

Question

Question: Let $f: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}]$ be defined by $f(x) = \sin^{-1}x$ $g: [-...

Let f:[1,1][π2,π2]f: [-1,1] \rightarrow [-\frac{\pi}{2},\frac{\pi}{2}] be defined by f(x)=sin1xf(x) = \sin^{-1}x

g:[1,1][0,π]g: [-1, 1] \rightarrow [0, \pi] be defined by g(x)=cos1xg(x) = \cos^{-1}x

h:R(π2,π2)h:R\rightarrow(-\frac{\pi}{2},\frac{\pi}{2}) be defined by h(x)=tan1xh(x) = \tan^{-1}x

Match each entry in List-l to the correct entries in List-II.

List-IList-II
P) f(x)+g(x)f(x) + g(x)1) 0
Q) f(x)+f(x)f(x) + f(-x)2) π2\frac{\pi}{2}
R) g(x)+g(x)g(x) + g(-x)3) π2\frac{-\pi}{2}
S) h(x)+h(x)h(x) + h(-x)4) π\pi
A

P \rightarrow 1, Q \rightarrow 2, R \rightarrow 3, S \rightarrow 4

B

P \rightarrow 2, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 1

C

P \rightarrow 3, Q \rightarrow 4, R \rightarrow 1, S \rightarrow 2

D

P \rightarrow 4, Q \rightarrow 3, R \rightarrow 2, S \rightarrow 1

Answer

P \rightarrow 2, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 1

Explanation

Solution

P) f(x)+g(x)f(x) + g(x):
Using the identity sin1x+cos1x=π2\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}.

Q) f(x)+f(x)f(x) + f(-x):
Using the property sin1(x)=sin1x\sin^{-1}(-x) = -\sin^{-1}x.

R) g(x)+g(x)g(x) + g(-x):
Using the property cos1(x)=πcos1x\cos^{-1}(-x) = \pi - \cos^{-1}x.

S) h(x)+h(x)h(x) + h(-x):
Using the property tan1(x)=tan1x\tan^{-1}(-x) = -\tan^{-1}x.

Therefore, the correct matching is: P \rightarrow 2, Q \rightarrow 1, R \rightarrow 4, S \rightarrow 1