Solveeit Logo

Question

Question: Let E(a) = \(\begin{bmatrix} \cos^{2}\alpha & \cos\alpha\sin\alpha \\ \cos\alpha\sin\alpha & \sin^{2...

Let E(a) = [cos2αcosαsinαcosαsinαsin2α]\begin{bmatrix} \cos^{2}\alpha & \cos\alpha\sin\alpha \\ \cos\alpha\sin\alpha & \sin^{2}\alpha \end{bmatrix}. If a and b differs by an odd multiple of p/2, then E(a) E(b) is a –

A

Null matrix

B

Unit matrix

C

Diagonal matrix

D

Orthogonal matrix

Answer

Null matrix

Explanation

Solution

We have

E(a) E(b) = [cos2αcosαsinαcosαsinαsin2α]\begin{bmatrix} \cos^{2}\alpha & \cos\alpha\sin\alpha \\ \cos\alpha\sin\alpha & \sin^{2}\alpha \end{bmatrix}

= [cosαcosβcos(αβ)cosαsinβcos(αβ)sinαcosβcos(αβ)sinαsinβcos(αβ)]\begin{bmatrix} \cos\alpha\cos\beta\cos(\alpha - \beta) & \cos\alpha\sin\beta\cos(\alpha - \beta) \\ \sin\alpha\cos\beta\cos(\alpha - \beta) & \sin\alpha\sin\beta\cos(\alpha - \beta) \end{bmatrix}As a and b differ by an odd multiple of p/2,

a – b = (2n + 1) p/2 for some As a and b integer n. Thus,

cos [(2n + 1)p/2] = 0

\ E (a) E (b) = O.