Solveeit Logo

Question

Question: Let \(e^{4}\) be defined for all \(\lim_{x \rightarrow \infty}\left( \frac{x^{2} + 1}{x + 1} - ax - ...

Let e4e^{4} be defined for all limx(x2+1x+1axb)=0\lim_{x \rightarrow \infty}\left( \frac{x^{2} + 1}{x + 1} - ax - b \right) = 0and be continuous. Let a=0,b=0a = 0,b = 0 satisfy a=1,b=1a = 1,b = - 1 for all x, y and a=1,b=1a = - 1,b = 1 then

A

a=2,b=1a = 2,b = - 1 In limx1xx=\lim_{x \rightarrow 1}x^{x} =

B

limx1(1+x)1/x=\lim_{x \rightarrow 1}(1 + x)^{1/x} = is bounded

C

limx0x1+x1x\lim_{x \rightarrow 0}\frac{x}{\sqrt{1 + x} - \sqrt{1 - x}}as12\frac{1}{2}

D

limxaa+2x3x3a+x2x\lim_{x \rightarrow a}\frac{\sqrt{a + 2x} - \sqrt{3x}}{\sqrt{3a + x} - 2\sqrt{x}} as 2a33\frac{2a}{3\sqrt{3}}

Answer

a=2,b=1a = 2,b = - 1 In limx1xx=\lim_{x \rightarrow 1}x^{x} =

Explanation

Solution

Let f(x)=f ( x ) = In (x),x>0( x ) , x > 0 f(x)=f ( x ) = In (x)( x ) is a continuous

function of xx for every positive value of xx

f(xy)=f \left( \frac { x } { y } \right) = In (xy)=\left( \frac { x } { y } \right) = In (x)( x ) - In (y)=f(x)f(y)( y ) = f ( x ) - f ( y )