Solveeit Logo

Question

Mathematics Question on Probability

Let EcE^c denotes the complement of an event EE. If E,F,GE, F, G are pairwise independent events with P(G)>0P (G) > 0 and P(EFG)=0P(E \cap F \cap G)=0 then , P(EcFcG)equalsP(E^c \cap F^c|G) equals

A

P(Ec)+P(Fc)P(E^c)+P(F^c)

B

P(Ec)P(Fc)P(E^c)-P(F^c)

C

P(Ec)P(F)P(E^c)-P(F)

D

P(E)P(Fc)P(E)-P(F^c)

Answer

P(Ec)P(F)P(E^c)-P(F)

Explanation

Solution

P(EcFcG)=P(EcFcG)P(G)P\bigg(\frac{E^c \cap F^c}{G}\bigg)=\frac{P(E^c \cap F^c \cap G)}{P(G)}
=P(G)P(EG)P(GF)P(G)=\frac{P(G)-P(E \cap G) -P(G \cap F)}{P(G)}
=P(G)[P(E)P(F)]P(G)[P(G)0]=\frac{P(G)[P(E)-P(F)]}{P(G)} \, \, \, \, \, \, [\because \, P(G) \ne 0]
=1P(E)P(F)=P(Ec)P(F)=1-P(E)-P(F)=P(E^c)-P(F)