Question
Question: Let E be the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$. For any three distinct points A, B, C on ...
Let E be the ellipse 25x2+4y2=1. For any three distinct points A, B, C on the ellipse E, let M1 be the mid-point of the segment joining points A and B and M2 be the mid-point of the segment joining points A and C. Then the maximum possible value of the distance between M1 and M2 as A, B, C vary on the ellipse E, is ____.

5
Solution
Let the equation of the ellipse be E:25x2+4y2=1. From the equation, a=5 and b=2.
Let A=(5cosα,2sinα), B=(5cosβ,2sinβ), and C=(5cosγ,2sinγ). Then M1=(25cosα+5cosβ,22sinα+2sinβ)=(25(cosα+cosβ),sinα+sinβ) M2=(25cosα+5cosγ,22sinα+2sinγ)=(25(cosα+cosγ),sinα+sinγ) Then \begin{align*} M_1 M_2 &= \sqrt{\left( \frac{5}{2}(\cos \gamma - \cos \beta) \right)^2 + (\sin \gamma - \sin \beta)^2} \ &= \sqrt{\frac{25}{4} (\cos \gamma - \cos \beta)^2 + (\sin \gamma - \sin \beta)^2} \ &= \frac{1}{2} \sqrt{25 (\cos \gamma - \cos \beta)^2 + 4 (\sin \gamma - \sin \beta)^2} \end{align*} The distance between B and C is BC=(5cosγ−5cosβ)2+(2sinγ−2sinβ)2=25(cosγ−cosβ)2+4(sinγ−sinβ)2 Therefore, M1M2=21BC. The maximum distance between two points on the ellipse is 2a=10. Therefore, the maximum possible value of M1M2 is 21(10)=5.