Solveeit Logo

Question

Question: Let E be the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$. For any three distinct points A, B, C on ...

Let E be the ellipse x225+y24=1\frac{x^2}{25} + \frac{y^2}{4} = 1. For any three distinct points A, B, C on the ellipse E, let M1M_1 be the mid-point of the segment joining points A and B and M2M_2 be the mid-point of the segment joining points A and C. Then the maximum possible value of the distance between M1M_1 and M2M_2 as A, B, C vary on the ellipse E, is ____.

Answer

5

Explanation

Solution

Let the equation of the ellipse be E:x225+y24=1E: \frac{x^2}{25} + \frac{y^2}{4} = 1. From the equation, a=5a = 5 and b=2b = 2.

Let A=(5cosα,2sinα)A = (5 \cos \alpha, 2 \sin \alpha), B=(5cosβ,2sinβ)B = (5 \cos \beta, 2 \sin \beta), and C=(5cosγ,2sinγ)C = (5 \cos \gamma, 2 \sin \gamma). Then M1=(5cosα+5cosβ2,2sinα+2sinβ2)=(52(cosα+cosβ),sinα+sinβ)M_1 = \left( \frac{5 \cos \alpha + 5 \cos \beta}{2}, \frac{2 \sin \alpha + 2 \sin \beta}{2} \right) = \left( \frac{5}{2}(\cos \alpha + \cos \beta), \sin \alpha + \sin \beta \right) M2=(5cosα+5cosγ2,2sinα+2sinγ2)=(52(cosα+cosγ),sinα+sinγ)M_2 = \left( \frac{5 \cos \alpha + 5 \cos \gamma}{2}, \frac{2 \sin \alpha + 2 \sin \gamma}{2} \right) = \left( \frac{5}{2}(\cos \alpha + \cos \gamma), \sin \alpha + \sin \gamma \right) Then \begin{align*} M_1 M_2 &= \sqrt{\left( \frac{5}{2}(\cos \gamma - \cos \beta) \right)^2 + (\sin \gamma - \sin \beta)^2} \ &= \sqrt{\frac{25}{4} (\cos \gamma - \cos \beta)^2 + (\sin \gamma - \sin \beta)^2} \ &= \frac{1}{2} \sqrt{25 (\cos \gamma - \cos \beta)^2 + 4 (\sin \gamma - \sin \beta)^2} \end{align*} The distance between BB and CC is BC=(5cosγ5cosβ)2+(2sinγ2sinβ)2=25(cosγcosβ)2+4(sinγsinβ)2BC = \sqrt{(5 \cos \gamma - 5 \cos \beta)^2 + (2 \sin \gamma - 2 \sin \beta)^2} = \sqrt{25 (\cos \gamma - \cos \beta)^2 + 4 (\sin \gamma - \sin \beta)^2} Therefore, M1M2=12BCM_1 M_2 = \frac{1}{2} BC. The maximum distance between two points on the ellipse is 2a=102a = 10. Therefore, the maximum possible value of M1M2M_1 M_2 is 12(10)=5\frac{1}{2} (10) = 5.