Solveeit Logo

Question

Mathematics Question on Probability

Let EE and FF be two independent events. The probability that exactly one of them occurs is 1125\frac{11}{25} and the probability of none of them occurring is 225\frac{2}{25} . If P(T)P(T) denotes the probability of occurrence of the event TT, then

A

P(E)=45,P(F)=35 P(E)=\frac{4}{5},P(F)=\frac{3}{5}

B

P(E)=15,P(F)=25 P(E)=\frac{1}{5},P(F)=\frac{2}{5}

C

P(E)=25,P(F)=15 P(E)=\frac{2}{5},P(F)=\frac{1}{5}

D

P(E)=35,P(F)=45 P(E)=\frac{3}{5},P(F)=\frac{4}{5}

Answer

P(E)=35,P(F)=45 P(E)=\frac{3}{5},P(F)=\frac{4}{5}

Explanation

Solution

P(EF)P(EF)=1125P ( E \cap F ) - P ( E \cap F ) = \frac{11}{25} \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(i)
\hspace30mm [i.e. only E or only F]
'
Neither of them occurs = 225\frac{2}{25}
P(EF)=225\Rightarrow \, \, \, \, \, \, \, \, \, \, \, P(\overline{E} \cap \overline{F})=\frac{2}{25} ....(ii)
From E (i), P (E) + P (F ) - 2 P (EF)=1125(E \cap F)=\frac{11}{25} \, \, \, \, \, \, \, \, \, ...(iii)
From E (ii), (1P(E))(1P(F))=225 \, \, \, \, \, \, \, \, (1-P(E))(1-P(F))=\frac{2}{25}
1P(E)P(F)+P(E).P(F)=225\Rightarrow \, \, \, \, \, \, \, 1-P(E)-P(F)+P(E).P(F)=\frac{2}{25} \, \, \, \, \, ..(iv)
From Eqs. (iii) and (iv),
P(E)+P(F)=75\, \, \, \, \, \, \, \, \, \, \, \, P(E) + P(F) = \frac{7}{5} and P(E).P(F)=1225 P(E).P(F)=\frac{12}{25}
P(E).[75P(E)]=1225\therefore \, \, \, \, \, P(E). \Bigg[\frac{7}{5}-P(E)\Bigg]=\frac{12}{25}
(P(E))275P(E)+1225=0\Rightarrow \, \, \, \, \, (P(E))^2-\frac{7}{5} P(E)+\frac{12}{25}=0
[P(E)35][P(E)45]=0\Rightarrow \, \, \, \, \bigg[P(E)-\frac{3}{5}\bigg]\bigg[P(E)-\frac{4}{5}\bigg]=0
P(E)=35or45\therefore \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P(E)=\frac{3}{5} \, or \, \frac{4}{5}
P(F)=45or35\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, P(F)=\frac{4}{5} \, or \, \frac{3}{5}