Solveeit Logo

Question

Mathematics Question on Probability

Let E and F be two independent events. If the probability that both E and F happen is 1/12 and the probability that neither E nor F happen is 1/2. Then,

A

P(E) = 1/3, P(F) = 1/4

B

P(E) = 1/2, P(F) = 1/6

C

P(E) = 1/6, P(F) = 1/2

D

P(E) = 1/4, P(F) = 1/3

Answer

P(E) = 1/4, P(F) = 1/3

Explanation

Solution

Both E and F happen P(EF)=112\Rightarrow \, \, \, P(E \cap F)=\frac{1}{12} and neither E nor F happens P(EF)=12\rightarrow \, \, \, P(\overline{E}\cap \overline{F})=\frac{1}{2}
But for independent events, we have
\hspace20mm P(E \cap F)=P(E)P(F)=\frac{1}{12} \, \, \, \, \, \, \, \, \, \, \, \, \, \, ...(i)
and P(EF)=P(E)P(F) \, \, \, \, \, \, \, \, \, \, \, \, \, P(\overline{E} \cap \overline{F})=P(\overline{E})P(\overline{F})
\hspace20mm \, \, \, \, \, \, \, \, \, \, \, \, \, \, =\\{ 1-P(E)\\} \\{1-P(F)\\}
\hspace20mm \, \, \, \, \, \, \, \, \, \, \, =1-P(E)-P(F)+P(E)P(F)
P(E)+P(F)=112+112=712\Rightarrow \, \, \, \, \, \, \, \, P(E)+P(F)=1-\frac{1}{2}+\frac{1}{12}=\frac{7}{12} \, \, \, \, \, \, \, \, \, \, \, ...(ii)
On solving Eqs. (i) and (ii), we get
either P(E)=13\, \, \, \, P(E)=\frac{1}{3} and P(F)=14 P(F)=\frac{1}{4}
or P(E)=14\, \, \, \, \, \, \, \, \, \, \, \, \, \, P(E)=\frac{1}{4} and P(F)=13 P(F)=\frac{1}{3}