Solveeit Logo

Question

Question: Let \(E _ { 1 } , E _ { 2 } , E _ { 3 }\) be three arbitrary events of a sample space S. Consider t...

Let E1,E2,E3E _ { 1 } , E _ { 2 } , E _ { 3 } be three arbitrary events of a sample space S. Consider the following statements which of the following statements are correct

A

P (only one of them occurs)

=P(Eˉ1E2E3+E1Eˉ2E3+E1E2Eˉ3)= P \left( \bar { E } _ { 1 } E _ { 2 } E _ { 3 } + E _ { 1 } \bar { E } _ { 2 } E _ { 3 } + E _ { 1 } E _ { 2 } \bar { E } _ { 3 } \right)

B

P (none of them occurs)

=P(Eˉ1+Eˉ2+Eˉ3)= P \left( \bar { E } _ { 1 } + \bar { E } _ { 2 } + \bar { E } _ { 3 } \right)

C

P (atleast one of them occurs) =P(E1+E2+E3)= P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

D

P (all the three occurs)=P(E1+E2+E3)= P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

Where P(E1)P \left( E _ { 1 } \right) denotes the probability of E1E _ { 1 } and Eˉ1\bar { E } _ { 1 } denotes complement ofE1E _ { 1 }.=P(E1+E2+E3)P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

Answer

P (atleast one of them occurs) =P(E1+E2+E3)= P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

Explanation

Solution

P (only one of them occurs)

=P(E1Eˉ2Eˉ3+Eˉ1E2Eˉ3+Eˉ1Eˉ2E3)= P \left( E _ { 1 } \bar { E } _ { 2 } \bar { E } _ { 3 } + \bar { E } _ { 1 } E _ { 2 } \bar { E } _ { 3 } + \bar { E } _ { 1 } \bar { E } _ { 2 } E _ { 3 } \right)

∴ (1) is incorrect.

P (none of them occurs)

=P(Eˉ1Eˉ2Eˉ3)P(Eˉ1+Eˉ2+Eˉ3)= P \left( \bar { E } _ { 1 } \cap \bar { E } _ { 2 } \cap \bar { E } _ { 3 } \right) \neq P \left( \bar { E } _ { 1 } + \bar { E } _ { 2 } + \bar { E } _ { 3 } \right)

∴ (2) is not correct.

P (atleast one of them occurs)

=P(E1E2E3)=P(E1+E2+E3)= P \left( E _ { 1 } \cup E _ { 2 } \cup E _ { 3 } \right) = P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

∴ (3) is correct.

P (all the three occurs)

=P(E1E2E3)P(E1+E2+E3)= P \left( E _ { 1 } \cap E _ { 2 } \cap E _ { 3 } \right) \neq P \left( E _ { 1 } + E _ { 2 } + E _ { 3 } \right)

∴ (4) is incorrect